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Abstract

With machine learning and deep learning operations becoming computationally expensive, the

demand for accelerators such as GPUs is increasing rapidly. To meet these demands, GPU

vendors are continuously introducing specialized functional units in GPUs. To exploit the

full capability of these functional units, GPU vendors also provide efficient libraries which are

manually fine-tuned. The problem with these manually tuned libraries is that they require

people with specialized skills to write them and may involve redundant work. We resolve

this problem by automating the process of generating efficient code for GPUs using the MLIR

compiler framework.

In this thesis, we propose a solution for the automatic generation of kernels for matrix

multiplication. We discuss optimization such as tiling, loop vectorization, memory padding,

and loop unrolling performed by us for achieving the performance comparable to the state-of-

the-art libraries such as cuBLAS. The main focus of this thesis is an analysis of the impact of

tiling on the performance of the automatic code generation for the Tensor cores for the matrix

multiplication. The experiments are performed on the NVIDIA Turing architecture and for the

problem size 8192x8192x8192. I also want to mention that the best performance achieved by

us is 48.9 TFLOPS which is nearly 90% of the performance of cuBLAS.

This thesis also discusses the multiple levels of tiling, its significance in the performance,

and the optimal tile size selection problem. The analysis of the performance impact of two

levels of tiling, namely the thread-block level and warp level, is done based on parameters like

bank conflicts, compute to memory ratio, cache hit rate, and barrier stalls. We propose an

analytical model for tile-size selection, which takes input data element size and shared memory

capacity and gives the optimal tile size for thread-block level tiling. We propose some rules for

the wap level tiling that needs to be followed for the warp level tile size selection. In the end,

we also discuss the limitations of the tile-size selection model proposed by us, such as it doesn’t

work well for small problem sizes.
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Chapter 1

Introduction

1.1 Overview

With the advances in machine learning and deep learning research, the demand for High-

Performance Computing (particularly GPGPUs) has also increased. GPUs nowadays come

with thousands of parallel processing cores capable of rapidly solving large problems with

substantial parallelism. The latest GPU architectures such as Nvidia Turing [3], Ampere [4]

consist of Tensor cores [5], [6], which can perform several mixed-precision matrix-multiply and

accumulate computations in a single operation. Usually, matrix operations are among the

commonly performed operations in the fields of HPC (High-Performance Computing) and ML

(Machine Learning), which are highly parallel in nature. The matrix multiplication is the most

common out of all the matrix operations performed, which in generalized form is known as

GEMM (General Matrix Multiply) and is represented as D = αAB + βC . The ordinary

matrix multiplication AB can be performed by setting α to one and C to an all-zeros matrix.

GEMM in the field of HPC is used for dense linear algebra [7], [8], earthquake simulation [9],

and climate prediction [10]. In ML, GEMM is used for training convolutional neural networks,

long short-term memory (LSTM) cells, and natural language processing.

CUDA, a parallel computing API created by Nvidia, enables us to execute C, C++, etc.,

codes on Nvidia GPUs. Having GPUs and CUDA API is not enough; we also need a highly

optimized kernel to run on these GPUs to maximize the usage of available resources. In general,

GPU vendors provide manually tuned implementations such as cuBLAS [11], cuDNN [12],

etc., which contain various deep learning primitives for several different matrix layouts. The

problem with these manually tuned implementations is that they need to be tuned for every new

architecture that comes into the market, and tuning them requires people with specialization

in those domains.
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The process of generating efficient fine-tuned implementations of deep learning primitives

can be automated using polyhedral frameworks. The matrix operations, such as matrix multi-

plication, bias addition, etc., can be expressed as affine loop-nests, which can be easily analyzed

and transformed using polyhedral frameworks.

The advantages of automating the process of generation of an efficient kernel are:

• It can be used for different architectures.

• It can be used for different matrix layouts and different matrix sizes.

• It also offers us to explore a non-trivial space of optimizations much more easily and

automatically.

• We can get performance close to hand-tuned implementations of kernels without writing

code manually.

The compiler infrastructure parts that we build for optimizations, such as tiling and unroll-

and-jam, are common to both CPUs and GPUs. The compiler framework we are using to build

this infrastructure is MLIR (Multi-Level Intermediate Representation) [13, 14, 15].

1.2 Our Contributions

The contributions made by us in this project are given below:

1. We provide a solution to automate the process of generating efficient kernels for Tensor

cores for GPU using the MLIR compiler framework.

2. We show with experimental results that our solution achieves performance 85-95% of

state-of-the-art libraries such as cuBLAS.

3. We analyze and discuss in detail the role of tiling over the performance of automatic code

generation for GPUs.

4. We propose a tile-size selection model for thread-block level and warp level tiling, which

yields us a tile size for optimal performance.

5. We also discuss the importance of several other optimizations such as loop vectorization,

shared memory padding, unrolling, and delaying data copies.
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1.3 Related Work

Several libraries already exist that include handwritten, highly optimized kernels for GPU.

CUDA libraries such as cuDNN [12], and cuBLAS [11] provides highly tuned implementations

of deep learning functions/algorithms and basic linear algebra subroutines. These libraries are

optimized only for a limited set of matrix layouts, and thus, they don’t provide much flexibility.

CUB [16] an NVIDIA’s library provides software components that are reusable for CUDA

programming model,’s each layer such as Warp-wide, Block-wide, and Device-wide primitives

for constructing high-performance, maintainable CUDA kernel code. The components provide

by CUB give a state-of-the-art performance.

CUTLASS [17] is a CUDA C++ template library that contains components to instantiate

performant kernels on GPUs. CUTLASS also contains support for mixed-precision computation

for Tensor cores. It is not easy for end-users to extend the CUTLASS since its codebase is large

and maintaining such a huge codebase is difficult. The performance achieved by CUTLASS

[18] for WMMA GEMM is 95% of the performance of cuBLAS. cuTensor [19] is a CUDA

library provided by NVIDIA for its GPUs, supports several Tensor operations, for example

- pointwise operations with pointwise operator fusion support. cuBLAST a library that is a

lighter version of CUBLAS, is made available by NVIDIA for basic linear-algebra subroutines

dedicated to GEMM, which provides flexibility in supporting more data types for input and

compute matrices and more matrix layouts.

Halide [20] is a DSL (embedded in the C++) compiler framework for image processing; it is

also extended for supporting Tensor cores. The problem with Halide is that it does not support

complex data types and the flexibility provided by it is limited; also, it supports only a single

combination of memory layouts of the input matrices. Due to the Tensor comprehensions, [21]

developed by Vasilache et al., and by using the polyhedral compilation techniques, the Halide

compiler generates CUDA kernels for a given mathematical specification of a deep learning

graph.

Some of the recent works in automatic kernel generation are being done by Somashekaracharya

G. Bhaskaracharya et al. [22], and Thomas Faingnaert et al. [23]. Bhaskaracharya et al. [22] in

their work used a polyhedral approach like ours to generate efficient CUDA kernels for matrix

multiplication using inline assembly instructions. On the other hand, we have used MLIR for

generating efficient CUDA kernels. They also proposed an extended approach for generating

fused kernels such as matrix multiplication plus ReLU activation or bias addition. In contrast,

we have generated kernels only for matmul.

Faingnaert et al. [23] framed the problem of manual code generation as a two-language
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problem. Faingnaert et al. [23] stated that ”efficient kernel generation require either low-level

programming, which implies low programmer productivity, or using libraries that only offer a

limited set of components.” The author used the LLVM framework [24], and Julia programming

language [25] for generating the efficient kernels. The Julia is a dynamic and flexible program-

ming language suitable for numeric and scientific computations. The performance of Julia is

comparable to traditional statically-typed languages like C and C++. The work of Faingnaert

et al. [23] is different from our work in two ways: we have used the affine dialect based on

the polyhedral techniques and the MLIR compiler framework [13, 14, 15]; instead, their work

is based on the LLVM compiler framework and Julia programming language. The advantage

of using MLIR over LLVM is that MLIR provides multiple levels of abstractions like loop ab-

stractions, math abstractions, tensor, and vector abstractions. Also, one can define their own

operations and abstractions in MLIR suitable for the problem they are trying to solve, which

is the biggest difference from LLVM.

1.4 Outline

The rest of the report is organized as follows: We provide the necessary background on MLIR,

GPU, and Tensor cores in Section 2. Then, in Section 3, we have explained the design and

implementation of automatic kernel generation for Tensor cores. In Section 4, first, we have

given the details on the experimental setup, then we have discussed in detail the impact of

tiling on performance. Section 5 comprises of tile size selection model. The report ends with a

conclusion in Section 6.
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Chapter 2

Background

This section provides background on MLIR, GPU programming and Tensor cores on GPUs.

2.1 MLIR

Multi-Level Intermediate Representation(MLIR) [13, 14, 15] aims to build reusable, extensible

compiler infrastructure and reduce the cost of building domain-specific compilers. MLIR is a

hybrid IR that can be used for multiple different requirements, such as:

• It can represent dataflow graphs (such as in TensorFlow), including dynamic shapes,

variables, etc.

• It can represent kernels in a form suitable for optimization for Machine Learning opera-

tions.

• It can host high-performance-computing-style loop optimizations across kernels (loop fu-

sion, loop interchange, multi-level tiling, unroll-and-jam).

• The target-specific operations such as accelerator-specific operations can also be repre-

sented using MLIR.

• It can represent kernels at different levels of abstractions(dialects in MLIR), which can

help perform transformations and optimizations not possible at a single level.

The MLIR structure is made up of the following components:

• Operations: This is the basic unit of semantics in MLIR and is commonly referred to

as Op. In MLIR, everything is modeled as ops, whether it is instruction, module, or

function. They take as input zero or more values called operands and produces zero or

more values called results respectively.

5



Figure 2.1: Different levels of abstraction and various dialects in MLIR, including Affine, Scf,
Standard, and GPU dialects used in our solution. Source: Zinenko et al. [1].

Figure 2.2: An example IR in MLIR comprising operation and types from different dialects
such as Tensor, Standard (std), Linalg, MHLO.
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(a) MLIR-HLO abstraction level.

(b) Affine dialect abstraction level.

Figure 2.3: Matrix multiplication representation in MLIR-HLO, a higher level dialect, and
Affine dialect, a loop-optimization-friendly dialect in MLIR.
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• Attributes: Attributes are structured compile-time static information, e.g., integer con-

stant values, string data, etc. Each op instance has an open key-value dictionary from

string names to attribute values.

• Regions and blocks: A region in MLIR is a list of blocks, and a block contains a list of

operations that may further contain regions. The blocks inside the region form a Control

Flow Graph (CFG). Each block may have successor blocks to which the control flow may

be transferred, and it ends with a terminator op.

• Dialects: A dialect is a logical grouping of operations, attributes, and types. Operations

from multiple dialects can coexist at any level of the IR at any point in time. Dialects

allow extensibility and provide flexibility that helps in performing specific optimizations

and transformations. There are many dialects in the MLIR, but the dialects we have

worked with are Affine, GPU, LLVM, SCF, and Standard (std).

• Functions and modules: A module is an operation with a single region containing a

single block and terminated by a dummy op that does not transfer the control flow. On

the other hand, a function is an op with a single region, with arguments corresponding

to function arguments.

Some of the MLIR dialects that we have used in our work are explained below:

• Affine Dialect: This dialect uses techniques from polyhedral compilation to make depen-

dence analysis and loop transformations efficient and reliable. We have performed most

of the optimizations and transformations at the level of affine dialect. The description of

some ops and terminologies from the affine dialect that we have used in this document is

as follows:

– Affine Expressions: An affine expression is a linear expression plus a constant.

MLIR extends this definition of affine expression to allow ‘floordiv’ (floor function),

‘ceildiv’ (ceiling function) and ‘mod’ (modulo operation) with respect to positive

integer constants.

Ex: (v1 + v2 + v3 mod 5) is an affine expression of literals v1, v2, and v3.

– Affine Maps: They are mathematical functions that transform a list of inputs (di-

mensions and symbols) into a list of results, with affine expressions combining the

dimensions and symbols. Affine maps help in doing powerful analysis and transfor-

mations due to the restrictions imposed on their form. Affine maps may be defined

8



inline at the point of use or maybe hoisted to the top of the file and given a name

with an affine map definition and used by name.

Ex: affine map< (d0, d1)[s0]→ (d0, d0 + d1 + s0 floordiv 2) >, here d0, d1 are the

input dimensions and s0 is the input symbol. The output of this affine map shown

in rhs is a tuple of 3 values.

– AffineForOp (affine.for): This operation represents an affine loop nest. It has

one region containing its body. It executes its body a number of times, iterating

from a lower bound to an upper bound by a stride. The stride is represented by

‘step’, whose default value is one if it is not present. The lower and upper bounds

are represented as the result of applying an affine mapping to a list of SSA values.

Since the mapping may return multiple results, the minimum/maximum of values is

used as lower/upper bound, respectively.

– AffineParallelOp (affine.parallel): It represents a hyper-rectangular affine par-

allel band, defining multiple SSA values for its induction variables. It has one region

containing its body. This operation’s lower/upper bound can have a list of values

since this operation is multidimensional.

• GPU Dialect: GPU dialect models the general GPU programming paradigm similar to

CUDA or OpenCL in MLIR. Its goal is to provide abstractions for kernel invocation not

present at the lower level. GPU dialect is meant to be vendor agnostic.

• NVVM Dialect: Since we are focusing on Tensor core code generation, we use and

extend another Nvidia specific dialect known as NVVM. This dialect provides operations

that are directly mapped to the NVPTX back-end in LLVM.

• LLVM Dialect: The final stage of code generation involves lowering to LLVM IR, from

where the LLVM back-end takes control and generates the target code. To model LLVM

IR, we use this dialect called the LLVM dialect, the lowest level of abstraction present in

MLIR.

2.2 GPU Programming

GPUs [26] are massively parallel processors, which means many threads execute the same

function commonly referred to as kernel in parallel. Since our approach, analysis, and experi-

mentation are only confined to NVIDIA GPUs, we will limit our discussion to NVIDIA GPUs,

and the CUDA programming model [27]. The smallest unit of execution is a thread organized

9



Figure 2.4: Memory hierarchy in GPUs, i.e., global memory, shared memory, and registers.
Thread hierarchy in GPUs, i.e., thread grid, thread blocks, and threads. Source: NVIDIA
Corporation [2].
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in a thread hierarchy. The hardware groups threads into sets of 32 threads called warps. The 32

threads in the same warp execute in a SIMT (Single Instruction Multiple Thread) manners. In

other words, these threads within a warp execute the same instruction simultaneously, possibly

on different data. The threads are logically grouped into blocks known as thread-block. The

set of all thread blocks on the GPU device is called the grid. Just like the threads, the GPU

memory is also organized hierarchically. The smallest and fastest type of memory in GPUs is

the register file or registers. Each thread in GPU typically has access to 255 registers. The

threads within a thread block have their own shared memory set, which they use for communi-

cation. The largest capacity memory on the GPUs is global memory, but it also has the highest

latency. All threads on the device (GPU) can access the global memory, irrespective of which

thread block they belong to.

2.3 Tensor Cores

Tensor cores [5], [6] were first introduced in NVIDIA’s Volta architecture [28] in 2017. Tensor

cores are programmable matrix-multiply-and-accumulate units that provide a 4x4x4 matrix

processing array which performs the operation D = A * B + C, where A, B, C and D are

4×4 matrices. Each Tensor core performs 64 floating-point fused-multiply-add mixed-precision

operations per clock. Multiple Tensor cores are used concurrently by a full warp of execution.

A warp comprising of 32 threads provide a larger 16x16x16 matrix operation to be processed

by the Tensor cores. The Tensor cores operation are exposed by CUDA as warp-level matrix

operations in the CUDA C++ WMMA (Warp Matrix Multiply Accumulate) API [29]. Only a

limited set of data types are supported by tensor cores such as TF32, FP16, FP64, INT8 for

input. We can use Tensor cores through libraries such as NVIDIA’s cuDNN [12] library that

contains Tensor cores kernels. NVIDIA’s cuTENSOR [19] based on CUTLASS [17] contains

Tensor-Core-accelerated kernels. LLVM also provides intrinsics which are mapped one-to-one

with the functions provided by WMMA API.

11



Chapter 3

Design and Implementation

In this section, we have explained the approach and implementation details of automatic code

generation (for matrix multiplication) for Tensor cores using MLIR.

3.1 Input IR

In Fig. 3.1, the input IR represents the basic matrix multiplication operation in some higher

abstraction level such as MLIR-HLO [30] or TF. The IR is now lowered to affine dialect ab-

straction level to perform loop optimizations.

3.2 Loop Tiling

Loop Tiling, also known as blocking, important from parallelism and locality viewpoint, is

performed for better data reuse and performance. The key objective of the tiling is to maximize

the ratio of computation operations to memory operations. We have performed two-level tiling:

thread-block level and warp level. The tile sizes are chosen based on the tile-size selection model

discussed in Section 5.

3.3 Shared Memory Buffer Allocation

Since we are generating kernels targeting GPUs, we allocate buffers in GPU’s shared memory.

After the allocation, the data is copied from GPU’s global memory into the shared memory

buffers. We have allocated the shared memory buffers only for the input matrices (A and B),

and this is a design choice that we have made. The thread-block level tile size determines the

shared memory buffer size for both the matrices. The tile sizes are chosen such that the shared

memory can be used maximally. The shared memory buffers are used for lower latency and

higher bandwidth.

12



Figure 3.1: Design and Implementation details comprising the workflow of optimizations per-
formed.
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(a) IR before loop tiling transformation.

(b) IR after loop tiling transformation.

Figure 3.2: Example IR before and after performing the loop tiling transformation.
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3.4 Creating Tensor Core Specific Operations

Since the automatic code generation is done targeting Tensor cores available in the latest GPU

architectures, we generate Tensor cores specific operations such as wmma.load, wmma.store,

wmma.mma sync, which replaces the scalar load, store, and compute operations. The addi-

tional details will be available in [31].

3.5 Insertion of Synchronization Barriers

The synchronization barriers are inserted in the code to ensure data is available before the

computation begins. The synchronization barriers being used in our generated code are actually

a thread-block level barrier to synchronize all threads in a thread block after copying the input

matrix tiles into the shared memory. The number of synchronization barriers inserted is kept

minimal because the barrier causes stall, ultimately degrading performance.

3.6 Loop Vectorization and Padding

The vectorization is performed to make use of the SIMD instruction set available in GPU

architectures. For doing loop vectorization in MLIR, we have to convert memrefs of f16 (input

matrices data type) into memrefs of a vector of f16 and transform the loop bounds and loop

bodies accordingly. We have created the vectors, each comprising 8 elements. The vectorization

is a crucial part of the solution because it provides a 2x speedup in the performance.

We know that memory is divided into banks and successive 32-bit words assigned to succes-

sive banks. Also, each bank can service one address per cycle. If multiple simultaneous accesses

are made to a bank, then it results in a bank conflict. As a result, the conflicting accesses are

serialized. Hence the memory access time increases, and the performance decreases. The so-

lution to this is shared memory padding. The padding is done to ensure simultaneous bank

accesses are reduced to the extent possible, thereby reducing the memory bank conflicts. For

padding, we have tuned a parameter known as the padding factor, which specifies how much

value the memory should be padded. Also, we have padded the k dimension of the matrices.

The optimal padding factor turns out to be 8, which gives us the best performance.

3.7 Identification, Marking and Collapsing of Parallel

Loop Nests

To map the parallel loop nests to GPU compute hierarchy, we first need to identify and mark the

parallel loops in the IR. An affine.for is parallel if all its iterations can be executed parallelly,
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(a) Input IR.

(b) Output IR.

Figure 3.3: Example IR before and after the identification, marking and collapsing of parallel
loop nests.
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or we can say if all its iterations are independent of each other. We mark parallel loops as

affine.parallel so that during the time of execution, there is a clear separation between the set

of instructions that can execute in parallel and the instructions which need to be executed

serially. The pass works as follows:

1. Walks over the entire input IR and collects all those affine.for which are parallel, using a

utility that checks for all the dependencies inside the iteration space of affine.for.

2. One by one converts all affine.for obtained in step 1 into affine.parallel and keeps affine.parallel’s

bounds same as bounds of affine.for.

After marking the loops as parallel, we collapse perfectly nested affine.parallel ops into a

single n-dimensional affine.parallel op where n is the sum of dimensions of all affine.parallel

ops, which are coalesced together. This process happens as follows:

1. Collects all the affine.parallel ops, which are perfectly nested.

2. Collects all the affine expressions corresponding to the lower and upper bound map of

affine.parallel ops obtained in step 1.

3. Collects all the lower and upper bound operands of affine.parallel ops.

4. Creates new lower and upper bound maps using affine expressions obtained in step 2.

5. Creates new coalesced affine.parallel op using maps and operands obtained in steps 4 and

3, respectively.

Collapsing the parallel loop nests helps in mapping the loops to GPU compute hierarchy

since all the perfectly nested parallel loops are now grouped into a single op.

3.8 Mapping Parallel Loop Nests to GPU Compute Hi-

erarchy

To execute the kernel on the GPU, the parallel loops need to be mapped to GPU entities such as

thread blocks, warps, and threads. We greedily map loops starting from outermost to innermost

to each GPU entity. Mapping the parallel loop means to specify which loop is distributed over

a thread block grid, distributed over a thread block, or distributed over warps. For mapping

the parallel loops, we move from the outermost loop to the innermost loop. Each parallel loop

in between is mapped to some GPU compute hierarchy. The parallel loops at nesting level one

are mapped to the thread block grid. The parallel loops at nesting level two are mapped to
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Figure 3.4: Example IR after the mapping of parallel loop nests to GPU compute hierarchy.
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the thread block, and the ones at nesting level three are mapped to the warps. All parallel

loops which are at nesting level four or more are marked as sequential. The mapping is done

by attaching an attribute to each parallel loop.

3.9 Converting Parallel Loops to GPU Launch Kernel

In MLIR’s GPU dialect, we have an operation known as LaunchOp, which launches a kernel on

the specified grid of thread blocks. The body of the kernel is the single region that this operation

contains. The parallel loops mapped to the thread block grid GPU compute hierarchy in the

previous section are now converted into a LaunchOp. There are six operands of the LaunchOp,

which are grid and block sizes. The grid and block sizes are determined using the thread-block

level tile size and warp level tile size. The body region of launch op contains six arguments

that are block identifiers and thread identifiers, along the x,y,z dimensions. The loop induction

variable, lower and upper bounds of parallel loops mapped to the thread block, and warp in

the previous section are also modified based on some computations performed using tile sizes

of both the levels and linear thread id.

3.10 Unrolling and Delaying Copies

The loop unrolling provides better opportunities for instruction scheduling and register tiling.

Loop unrolling also helps reduce control overhead, and reduced instruction count due to fewer

number compare and branch instructions. The loops are unrolled based on a loop unroll factor,

which specifies that by what extent the loop has to be unrolled. In our case, we have unrolled

only the copy loops and have unrolled them completely. After unrolling the copy loops, we

delay the data copy by moving the copy instructions after the computation instructions. The

copies are delayed to hide the latency of loads from global memory. The additional details will

be available in [31].

The GPU kernel outlining pass is run now, converting all the GPU dialect’s LaunchOp

into LaunchFuncOp which launches a function as a GPU kernel on the specified grid of thread

blocks. Since we are using the LLVM backend for code generation, we now convert MLIR to

LLVM IR. Now, the LLVM backend will generate the target code.
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Figure 3.5: Example IR after converting the parallel loops to GPU launch kernel.
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Chapter 4

Performance Analysis of Tiling

Loop tiling, also known as blocking, is done for better data reuse and, all state-of-the-art

implementations of GEMM perform two-level tiling. We have also performed two-level tiling,

namely thread-block tiling and, warp-level tiling also known as register tiling. In this section,

we first explain the experimental setup, and then we discuss the impact of different levels of

tiling on the performance.

We have used the following symbols in the subsequent subsections:

• M , N , and K constitute the problem size for dimensions m,n, and k.

• Tm, Tn, and Tk is the thread-block level tile size for dimensions m,n, and k, respectively.

• Wm, Wn, and Wk is the warp level tile size for dimensions m,n, and k, respectively.

4.1 Experimental Setup

The experiments are done on a server with Intel Xeon Silver 4110 processor based on Intel

Skylake architecture and NVIDIA GeForce RTX 2080 Ti GPU. The detailed information is

given in Table 4.1. We have used NVIDIA Nsight Compute (Version: 2021.1.1.0 ), an interactive

kernel profiler for CUDA applications, to profile the kernel executions and gather the details of

performance metrics for analysis.

The problem size chosen for multiplication is 8192x8192x8192. The input data is of type

FP16, and the accumulator/output is of type FP32.

4.2 Thread Block Level Tiling Analysis

For analyzing the impact of thread block tiling on the performance, we have divided the MxNxK

matrix multiplication into multiples blocks/tiles of TmxTnxTk , as shown in Figure 4.1. Out
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Microarchitecture Intel Skylake (64-bit)
Processors 2-socket Intel Xeon Silver 4110
Clock 2.10 GHz
Cores 16 (8 per socket)
Private caches 64 KB L1 cache, 1024 KB L2 cache
Shared cache 11,264 KB L3 cache
Memory 256 GB DDR4 (2.4 GHz)
Microarchitecture (GPU) NVIDIA Turing
GPU NVIDIA GeForce RTX 2080 Ti
Multiprocessors (SMs) 68
CUDA cores (SPs) 4352
GPU Base Clock 1350 Mhz
L1 cache/shared memory 96 KB
L2 cache size 5632 KB
Memory size 11.26 GB GDDR6
Memory bandwidth 616 GB/s
Tensor Cores 544
Register File Size/SM 256 KB
OS Linux kernel 4.18.0 (CentOS 8)
Compiler GNU C/C++ (gcc/g++) 8.3.1
CUDA version 10.2
NVCC version 10.2.89
Nvidia driver version 440.33.01
cuBLAS version 10.2
Peak performance (system) 56.9 TFLOPS
cuBLAS performance 55.2 TFLOPS

Table 4.1: System details of CPU and GPU architecture, compilers and library versions, peak
performance of the system, and benchmark performance of cuBLAS library.

Parameter \Tile Size - Perf (in TFLOPS)
32x32x64 - 14.9

(Worst perf)
64x256x32 - 34.3
(Average perf)

128x128x64 - 48.9
(Best perf)

Utilization (%) - LSU functional unit 23.6 17.15 21.88
Utilization (%) - Tensor (FP) functional unit 7.84 18.14 21.7
Bank conflicts 343,989,534 58,158,461 7,506
L1 cache - hit rate 0.27 0.83 0.95
Stall barrier (in cycles) 10.7 0.76 0.5

Table 4.2: Thread-block level tiling performance analysis for problem size = 8192x8192x8192.
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Figure 4.1: Performance of different thread-block level tile sizes. Problem size MxNXK =
8192x8192x8192.

of these many different configurations, we have chosen the following three sizes for analysis:

T1 - 32x32x64, T2 - 64x256x32, and T3 - 128x128x64. As a result, T1 - gives the worst

performance, i.e., 14.9 TFLOPS, T2 - gives an average performance, i.e., 34.3 TFLOPS, and

T3 - gives a near-optimal performance, i.e., 48.9 TFLOPS. Furthermore, we have analyzed

all three cases (tile sizes) based on some parameters: Load/Store functional unit utilization,

Tensor (Floating Point) functional unit utilization. Bank conflicts in shared memory, L1 cache

hit rate, and barrier stall cycles. The barriers are inserted in the code to ensure that all the

threads finish copying data and computation for a given iteration before the next iteration

begins. Since some threads take more time to complete than others; as a result, remaining

threads have to wait at the barrier for completion, and the amount of time spent in waiting

is known as stall barrier cycles. The comparison of T1, T2, T3 based on these parameters is

given in Table 4.2.

The key objective of the tiling is to maximize the ratio of compute operations to memory

operations, or, in other words, maximizing the ratio of utilization of the Tensor (FP) functional

unit and Load/Store functional unit. For example, from Table 4.2, we can see that for T1,

the ratio is close to 0.3, which is quite low, which means a large amount of time is spent on
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data movement compared to the computations, which results in a bad performance, i.e., 14.9

TFLOPS. On the other hand, for T2 and T3, the ratio is close to 1, which means that both the

data movement and computation operations take place in an equal amount during the kernel

execution, which results in a better performance compared to T1. But the overall utilization

of both the units is comparatively lesser for T2 than T3; thus, T2’s performance is only 34.3

TFLOPS, and T3 gives 48.9 TFLOPS.

In general, for reducing the bank conflicts in shared memory, padding is performed for

aligning the data so that the conflicts are reduced. But the padding alone can’t reduce the

bank conflicts. The combination of appropriate padding factor and tile size is required to

minimize the shared memory bank conflicts. From the table, we can see that since the bank

conflicts for T1 are much much high which results in terrible performance for T1. While the

bank conflicts reduced by a 7 fold for T2, the performance also increases. For T3, the bank

conflicts are almost negligible compared to T1 and T2, and hence for T3, the performance is

maximum.

The L1 cache also plays a role in the performance because the output/accumulator matrices

are not placed in the shared memory. For them, the data movement happens in this way:

Global memory → L2 cache → L1 cache → registers. Since the tiling helps in data reuse, the

better the data reuse, the better the performance. From Table 4.2, we can see that size of T1

is smaller. As a result, the data reuse is less. Hence the hit rate for T1 is the least, and also, it

performs worst. While the size of T2 and T3 is large as compared to T1 and thus, the hit rate

for T2 and T3 is also much higher than T1. As a result of this, their performance is better as

compared to T1.

For T1, the stall at the barrier is quite high because the memory operations and compu-

tations are highly unbalanced for T1, and, as a result, some threads spend more time copying

data. In comparison, others spend less time doing computation, due to which a large amount

of time is spent waiting on the barrier for all threads to complete. On the other hand, for T2

and T3, the amount of time spent on data copying and computations is nearly equal; thus, very

little time (< 1 cycle) is wasted stalling at the barrier.

From this analysis, we can conclude that the larger the tile size (factoring in the shared

memory capacity), better the performance.

4.3 Warp-Level Tiling Analysis

The thread block-level tiling or level-1 tiling is performed to decide how much work is done

by a thread block. The warp level tiling, also known as register tiling, is the second tiling

level performed to distribute a thread block tile over the appropriate number of warps. We
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Figure 4.2: Warp level tile sizes performance for problem size = 8192x8192x8192 and thread-
block level tile size = 128x128x64.

have chosen the thread block tile size 128x128x64 and divided it into eight different warp level

tiles of sizes WmxWnxWk for analyzing the warp level tiling shown in Figure 4.2. Out of these

eight configurations, we have chosen the following two for analysis: W1 - 64x64x32 and W2

32x64x16. W1 gives the worst performance - 30.2 TFLOPS, W2 gives the best performance -

48.9 TFLOPS.

From Table 4.3, we can see that the ratio of compute operations to memory operations is

close to 3/4 for W1 while it is close to 1 for W2. And, the overall utilization of the Tensor (FP)

unit for W2 is high compared to W1. As a result, the performance achieved for W2 is 1.6 times

more than the performance for W1. The observation that we made in thread-block level tiling

was the larger the tile size (constrained by shared memory size), the better the performance;

interestingly, that’s not the case for warp-level tiling.

We can see from Table 4.3 that the number of bank conflicts for W1 is large as compared

to W2, which reflects in the performance as well because while moving the data from shared

memory into registers, the warp level tile size plays a key role; hence the padding along with

appropriate warp level tile size is must for reducing the bank conflicts. We have discussed in

Section 4.2 how the thread-block level tiling impacts the L1 cache hit rate. From Table 4.3, we

can see that the warp level tiling does not have a big impact on the L1 cache hit rate. Although

there’s a significant difference in the performance of W1 and W2, the cache hit rate for W1 is

slightly less than W2.

The number of registers available also limits the number of warps/threads that can be

25



Parameter \Tile Size - Perf (in TFLOPS)
64x64x32 - 30.2

(Worst perf)
32x64x16 - 48.9

(Best perf)
Utilization (%) - LSU functional unit 16.38 21.92
Utilization (%) - Tensor (FP) functional unit 13.49 21.74
Bank conflicts 2,052,360 8,597
L1 cache - hit rate 0.79 0.95
Register usage per thread 255 210
Number of threads 524,288 1,048,576

Table 4.3: Warp level tiling performance analysis for problem size = 8192x8192x8192. Thread-
block level tile size chosen = 128x128x64.

issued/executed. We can see from Table 4.3 that the register usage per thread for W1 is high

as compared to W2. As a result, fewer threads were executed for W1, and as a result, the W1’s

performance is less than W2.
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Chapter 5

Tile-Size Selection Model

This section provides the tile-size selection model for thread-block level tiling and rules to be

followed while choosing the warp level tile size.

5.1 Background

In Section 3, we have discussed various optimizations and transformations such as loop tiling,

loop vectorization, loop unrolling, and shared memory padding. Each optimization has its own

significance in improving the performance of automatic kernel generated for matrix multipli-

cation. This thesis focused on the performance impact of tiling and the model for tile size

selection. The performance impact of loop tiling on the automatic code generation is discussed

in detail in Section 4.

Loop tiling, important from parallelism and locality viewpoint, is a widely used loop trans-

formation. It is performed for better data reuse at a specific level of the memory hierarchy (such

as L1/L2 cache or registers), enhanced data locality, and maximizing the ratio of computation

operations to memory operations. Loop tiling is also known as blocking since the computa-

tion is executed block after block after performing the loop tiling. We can perform multiple

levels of tiling by further tiling the tile or block obtained from the previous level of tiling. All

state-of-the-art implementations of GEMM perform two-level tiling. We have also performed

two-level tiling, namely thread-block level tiling (level 1) and warp-level tiling or register tiling

(level 2). The thread-block level tiling is performed to distribute the amount of work done by

a thread block, while the warp level tiling is performed to distribute the thread block tile over

the appropriate number of warps.

For tiling the loops, we need to know the value of a parameter known as tile size, which

specifies the size of the newly formed tile after performing the tiling. From Sections 4.2 and 4.3,
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we can see how crucial is the selection of appropriate tile size for the performance. The selection

of the best tile size for the problem we are solving and the given architecture is an NP-hard

problem known as the Optimal Tile Size Selection Problem. Many works [32, 33, 34, 35, 36] had

been done in this area for addressing this problem. Abid M. Malik [36] in their work proposed

a tile size selection model using machine learning which predicts the tile sizes. The predicted

tile sizes give the near-optimal performance (within 4% of the optimal performance). Khaled

Abdelaal et al. [34] in their work proposed a solution for the tile size selection problem using

polyhedral cross-compilation, which generates only two tile sizes achieving strong performance.

We solve the optimal tile size selection problem by the model proposed in this section for

thread-block level and warp level tiling.

5.2 Thread-Block Level Tile Size Selection Model

In Section 5.1, we have discussed the significance of loop tiling and the hardness of the optimal

tile size selection problem. Also, we have mentioned in that section some of the models/solutions

for the optimal tile size selection problem. In this section, we propose our analytical model for

thread-block level tile size selection.

We can see from Section 4.2 that choosing a larger thread-block level tile size gives better

data reuse and better performance. The rationale behind a larger thread-block tile performing

better is that we want to utilize the shared memory maximally, and the larger tile size is suitable

for that. But it is not the case that any large tile size will always perform better. Based on

our analysis, we have found some constraints explained below. The main constraint is that

the total amount of data residing in the blocks/tiles should not exceed the maximum amount

of shared memory allowed to be used. Considering the points based on our analysis, we have

derived a model, which is given below.

Let Tm, Tn, and Tk be the thread-block level tile size for dimensions m, n, and k, respectively.

SData is the size of the input matrix element (in bytes), and SMem is the amount of shared

memory capacity (in KB). Then, the tile-size selection model for thread-block level tiling is as

follows:

Tm = Tn (5.1)

Tm, Tn ≥ 2 ∗ Tk (5.2)

{(Tm ∗ Tk) + (Tn ∗ Tk)} ∗ SData ≤ SMem. (5.3)
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By substituting the value of SData and SMem and solving these equations, we can find either

the optimal tile size or a small set of configurations of tile sizes, out of which one will give the

optimal performance. We can check the correctness of this model for the problem size we chose

for the experimentation. When we substitute the SData = 2 bytes and SMem = 48 KB, it yields

128x128x64, which gives the best performance, i.e. 48.9 TFLOPS (as discussed in Section 4.2).

As we say that the model is derived based on the analysis that we have done, so the

important points which we get from our analysis and on which this tile size selection model is

based are as follows:

• The tile size for m, n dimension should be equal so that the data reuse across the dimen-

sions is uniform.

• The tile size for m, n dimension should be greater than the k dimension and, since we are

only choosing multiples of two as tile sizes, the value for the m and n dimension should

be at least two times the value of the k dimension.

• The shared memory is limited, and during the tile size selection, we should consider this

point and choose the tile sizes so that the tiles can fit inside the shared memory.

5.3 Warp Level Tile Size Selection Model

The warp level tiling, also known as register tiling, distributes the thread block tile over the

appropriate number of warps. It is also performed for better register reuse. We have a model

(discussed in Section 5.2) for thread-block level tiling in which values can be substituted, and

we will get either a single tile size or a small set of tile sizes. For the warp-level tiling, based

on our analysis in Section 4.3, we have derived some rules which, on being followed, give us a

small set of tile sizes out of which one will give us the best performance.

Let Wm, Wn, and Wk be the warp level tile size for dimensions m,n, and k, respectively.

SWarp is the size of the warp (depends on the hardware), whose value is 32. Then, the rules

that need to be followed for warp level tile size selection are as follows:

• We should choose the warp level tile size such that the thread-block level tile size should

be at least twice of warp level tile size for each of the dimensions.

• The warp level tile size has to be greater than or equal to 16x16x16 because this is the

smallest size supported by the WMMA API.
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• The warp level tile should be such that the result of (Tm/Wm)∗ (Tn/Wn)∗Swarp should be

less than or equal to 1024 because this is equivalent to the number of threads per block

and the limit for this is 1024.

Following the above-mentioned rules, we get a small set of warp level tile sizes out of which

one gives us the best performance.

5.4 Limitations

Some of the limitations of the tile size selection model proposed by us are as follows:

• The model proposed by us does not perform well for smaller problem sizes.

• The model is tested only for square size matrices multiplication, and it may not work well

for non-square matrices multiplication.

This section discussed loop tiling, its significance, and the optimal tile size selection problem.

Then in Sections 5.2 and 5.3, we have proposed the tile size selection model/rules for thread-

block level tiling and warp level tiling, respectively. We have also mentioned the limitations of

the model proposed by us in Section 5.4. The tile size selection model proposed yields us the

tile size giving the best performance. The tile size model works well for the NVIDIA Turing and

the Ampere (latest) architecture. The tile size selection model depends on the shared memory

capacity, the size of the data type used, and the warp size. The tile size selection model does

not depend on other hardware properties making it robust. We hope that the robustness of the

tile size selection model will continue and make it work on the future architectures as it is or

by slightly modifying it.
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Chapter 6

Conclusions

We have tackled the problem of automatic and efficient code/kernel generation for matrix mul-

tiplication for GPU Tenosr cores using MLIR. We can conclude that our solution provides more

flexibility to compiler developers, library developers, and hardware vendors. It uses the affine

dialect of MLIR based on polyhedral transformation techniques for loop optimizations. The

solution is front-end independent, i.e., it can be used along with any high-level programming

language. We have shown with the experiments that our solution achieves performance compa-

rable to hand-tuned libraries such as cuBLAS and CUTLASS for NVIDIA Turing and Ampere

GPU architectures. In some sense, our work, based on MLIR, is modular and reusable to be

used in several compilation frameworks that require a high-performance code generation path

for GPUs.

As a part of this thesis, we have also proposed a tile-size selection model for thread-block

level tiling and warp level tiling. The model proposed by us yields us either one tile size, which

gives us the best performance, or it yields a small set of tile sizes, out of which one which gives

us the best performance can be found out by the experimentation. The model proposed works

well only for large problem sizes. As a part of future work, the model can be enhanced to

become more robust and work well for all problem sizes.

In Section 3, we have discussed various optimization such as loop tiling, vectorization,

memory padding, and loop unrolling. The padding factor required for performing padding is

at present determined by experimentation. In the future, we can also work on deriving a model

which can provide us the optimal padding factor just like the tile size selection model provides

us the optimal tile size. Also as a part of future work, we can derive an analytical model for

the loop unrolling factor.

The solution that we provide for the automatic kernel generation for matrix multiplication

is restricted only to the GPUs comprising Tensor cores. In the future, this work can be ex-

31



tended to make this solution work for the GPUs not having tensor cores and also for the GPUs

made available by hardware vendors other than NVIDIA. Our solution tackles the problem of

automatic code generation only for matrix multiplication, and it can be further extended for

problems such as automatic generation of fused kernels for matrix multiplication plus pointwise

operations such as bias addition, ReLU activation, and convolution.
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