
Automatic Data Allocation, Buffer Management and
Data Movement for Multi-GPU Machines

A Thesis

Submitted For the Degree of

Master of Science (Engineering)

in the Computer Science and Engineering

by

Thejas Ramashekar

Computer Science and Automation

Indian Institute of Science

BANGALORE – 560 012

OCTOBER 2013

i

©Thejas Ramashekar

OCTOBER 2013

All rights reserved

Acknowledgements

I take this opportunity to thank all those who made this thesis work possible. First

and foremost, I thank my advisor Dr. Uday Bondhugula for his invaluable guidance. He

helped us to get started by guiding us thoroughly through our first joint work, out of

which I found the motivation and the necessary expertise for the main problem solved

in the thesis. He gave me enormous amount of freedom in selecting the problem and

approaching the solution and was always there with a timely guidance when I needed it.

I specially thank the members of the Multi-core Computing Lab who made the day-

to-day environment both academically and otherwise refreshing. Without them, the

lab would not have been the wonderful workplace that it is. Special thanks to Roshan

Dathathri for being always enthusiastically available for a technical discussion and his

help towards reviews and suggestions. I would like to thank my friend Jay Thakkar for

all his help with Tikz diagrams used in this thesis.

I would also like to specially thank my wife Pallavi for her constant support during

times of need, sharing in my happiness during times of joy, and timely warnings whenever

I slacked in my work.

I have been fortunate to have a enviable group of close friends whose support and

company made the entire experience a truly memorable one.

Finally, I would like to thank my parents, and sister for their support and encour-

agement without which I would not have even thought of pursuing higher education.

i

Publications based on this Thesis

1. Thejas Ramashekar, Uday Bondhugula, Automatic Data Allocation and Buffer

Management for Multi-GPU machines. In the ACM Transactions on Architecture

and Code Optimization, Vol. 10, No. 4, Article 60, Publication date: December

2013. Selected for presentation at HiPEAC 2014, Jan 2014, Vienna, Austria.

2. Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday Bondhugula.

Generating efficient data movement code for heterogeneous architectures with distributed-

memory. In the 22nd International Conference on Parallel Architectures and Com-

pilation Techniques (ACM/IEEE PACT), September 2013, Edinburgh, Scotland.

ii

Abstract

Multi-GPU machines are being increasingly used in high performance computing. These

machines are being used both as standalone workstations to run computations on medium

to large data sizes (tens of gigabytes) and as a node in a CPU-MultiGPU cluster handling

very large data sizes (hundreds of gigabytes to a few terabytes). Each GPU in such a

machine has its own memory and does not share the address space either with the host

CPU or other GPUs. Hence, applications utilizing multiple GPUs have to manually

allocate and manage data on each GPU.

A significant body of scientific applications that utilize multi-GPU machines contain

computations inside affine loop nests, i.e., loop nests that have affine bounds and affine

array access functions. These include stencils, linear-algebra kernels, dynamic program-

ming codes and data-mining applications. Data allocation, buffer management, and

coherency handling are critical steps that need to be performed to run affine applica-

tions on multi-GPU machines. Existing works that propose to automate these steps have

limitations and inefficiencies in terms of allocation sizes, exploiting reuse, transfer costs

and scalability. An automatic multi-GPU memory manager that can overcome these

limitations and enable applications to achieve scalable performance is highly desired.

One technique that has been used in certain memory management contexts in the

literature is that of bounding boxes. The bounding box of an array, for a given tile, is the

smallest hyper-rectangle that encapsulates all the array elements accessed by that tile.

In this thesis, we exploit the potential of bounding boxes for memory management far

beyond their current usage in the literature.

In this thesis, we propose a scalable and fully automatic data allocation and buffer

iii

iv

management scheme for affine loop nests on multi-GPU machines. We call it the Bound-

ing Box based Memory Manager (BBMM). BBMM is a compiler-assisted runtime mem-

ory manager. At compile time, it uses static analysis techniques to identify a set of

bounding boxes accessed by a computation tile. At runtime, it uses the bounding box

set operations such as union, intersection, difference, finding subset and superset relation

to compute a set of disjoint bounding boxes from the set of bounding boxes identified at

compile time. It also exploits the architectural capability provided by GPUs to perform

fast transfers of rectangular (strided) regions of memory and hence performs all data

transfers in terms of bounding boxes. BBMM uses these techniques to automatically

allocate, and manage data required by applications (suitably tiled and parallelized for

GPUs). This allows it to (1) allocate only as much data (or close to) as is required by

computations running on each GPU, (2) efficiently track buffer allocations and hence,

maximize data reuse across tiles and minimize the data transfer overhead, (3) and as

a result, enable applications to maximize the utilization of the combined memory on

multi-GPU machines. BBMM can work with any choice of parallelizing transformations,

computation placement, and scheduling schemes, whether static or dynamic. Exper-

iments run on a system with four GPUs with various scientific programs showed that

BBMM is able to reduce data allocations on each GPU by up to 75% compared to current

allocation schemes, yield at least 88% of the performance of hand-optimized OpenCL

codes and allows excellent weak scaling.

Contents

Acknowledgements i

Publications based on this Thesis ii

Abstract iii

List of Figures ix

List of Algorithms xi

1 Introduction 1
1.1 GPUs in high performance computing . 1
1.2 Towards Multi-GPU machines . 2
1.3 Programming challenges on a multi-GPU machine 3

1.3.1 Computation partitioning and load balancing 3
1.3.2 Data allocation and buffer management 3
1.3.3 Inter-GPU data movement . 4
1.3.4 Existing approaches . 4

1.4 Affine loop nests . 5
1.4.1 Running affine loop nests on multi-GPU machine 5

1.5 Need for a multi-GPU memory manager 5
1.5.1 Desired capabilities . 6

1.6 Bounding Box based Memory Manager 7
1.7 Contributions . 7

2 Motivating Example 9
2.1 General structure of affine programs running on a multi-GPU machine . 9
2.2 Floyd-Warshall algorithm . 10

2.2.1 Per-tile data allocation . 11
2.2.2 Inter-GPU coherency . 13
2.2.3 Exploiting inter-tile reuse . 13

3 Background 14
3.1 Overview of GPU architecture . 14

3.1.1 NVIDIA Fermi GPU architecture 14

v

CONTENTS vi

3.2 OpenCL programming model . 17
3.2.1 OpenCL terminologies . 17
3.2.2 OpenCL memory hierarchy . 18
3.2.3 OpenCL runtime API . 19
3.2.4 Sample OpenCL code . 20

3.3 Polyhedral model . 21

4 BBMM - Bounding Box Based Memory Manager 24
4.1 Bounding boxes and set operations . 24
4.2 High-level overview of BBMM . 27

4.2.1 Input to BBMM - computation tile 28
4.2.2 Compile time component . 28
4.2.3 Runtime component . 28

4.3 Data allocation scheme . 30
4.3.1 Initial bounding box extraction at compile time 30
4.3.2 Disjoint set of bounding boxes at runtime 31
4.3.3 Example . 32
4.3.4 Discussion . 32

4.4 Buffer management . 34
4.4.1 Design overview . 35
4.4.2 Inter-tile data reuse . 35
4.4.3 Freeing up space on a GPU – box-in and box-out 37
4.4.4 Relationship between tiles, bounding boxes and multiple GPUs . 38

4.5 Inter-GPU coherency . 38
4.5.1 High-level overview of BBMM’s coherency scheme 39
4.5.2 Details of BBMM’s coherency scheme 39

4.6 Host and kernel code generation . 41
4.6.1 Structure of the generated host code 42
4.6.2 Structure of the parameterized GPU kernel 43

4.7 Implementation . 44
4.8 Experimental setup and benchmarks . 45
4.9 Evaluation parameters and results . 46

4.9.1 Overhead of the runtime library 46
4.9.2 Performance of programs with data scaling 47
4.9.3 Comparison of data allocation sizes 48
4.9.4 Benefits of inter-tile data reuse 49
4.9.5 Effect of access function split . 50
4.9.6 Benefit of box-in and box-out . 51
4.9.7 Comparison with manual code . 52

5 Data movement scheme: Details and further optimizations 57
5.1 Brief description of the schemes . 57

5.1.1 The Flow-Out (FO) scheme . 57
5.1.2 The Flow-Out Partitioning (FOP) scheme 58

CONTENTS vii

5.2 Experimental Evaluation . 59
5.2.1 Experimental setup . 59
5.2.2 Benchmarks . 60
5.2.3 Evaluation . 60
5.2.4 Results . 60

5.3 Further optimizations: Maximizing compute-copy overlap 61
5.3.1 Compute-copy overlap . 63
5.3.2 Compute-copy overlap in our framework 64
5.3.3 Implementing compute-copy overlap 64
5.3.4 Maximizing compute-copy overlap 65

5.4 Experimental results . 67

6 Related Work 70

7 Conclusions 75
7.1 Summary . 75
7.2 Future work . 76

References 77

List of Tables

4.1 Set operations of BBMM and their overhead 25
4.2 Functions provided by the buffer manager 35
4.3 Functions provided by the data movement component 41
4.4 Programs used for evaluation . 46

5.1 Results on the Intel-NVIDIA system . 62
5.2 Results on the AMD system . 63
5.3 Results of compute-copy overlap . 66

6.1 Existing data allocation and buffer management schemes 70

viii

List of Figures

1.1 Multi-GPU machine setup (Photo Courtesy: AMD) 2

2.1 General structure of an affine loop nest for a multi-GPU machine 11

2.2 Floyd-Warshall code . 12

2.3 Per-tile data allocation, coherency and reuse exploitation 12

3.1 Fermi Architecture (Courtesy:NVIDIA) 15

3.2 Floyd-Warshall code on cpu . 21

3.3 Floyd-Warshall opencl host code . 22

3.4 Floyd-Warshall opencl kernel code . 22

3.5 Sample affine loop code . 23

3.6 Polyhedral representation of a simple loop 23

4.1 Data transfer time for various access shapes 27

4.2 High-level overview of BBMM . 29

4.3 Initial bounding boxes for a tile . 33

4.4 Buffer management component of BBMM 34

4.5 General structure of the parameterized GPU kernel 44

4.6 Performance with data-scaling . 48

4.7 Allocation size comparison . 49

4.8 Speedup with inter-tile reuse as compared to without-reuse 50

4.9 Performance with access function splits as compared to without-split . . 51

4.10 Speedup with box-in and box-out over a 12-core system 52

ix

LIST OF FIGURES x

4.11 Performance normalized to manually written multi-GPU OpenCL code . 54

4.12 Performance normalized to manually written multi-GPU OpenACC code 55

4.13 Comparison with StarPU for mvt on 1 GPU 55

5.1 FOP – strong scaling on the Intel-NVIDIA system 62

5.2 Benefit of Compute-copy overlap . 65

5.3 Compute-copy overlap with and without tile reordering 65

5.4 Performance of tile reordering with varying tile sizes 67

List of Algorithms

1 Extracting initial bounding boxes . 31

2 Computing disjoint bounding boxes . 31

3 Initializing a bounding box . 36

4 Structure of generated host code . 43

xi

Chapter 1

Introduction

1.1 GPUs in high performance computing

In the nineties, the use of GPU was mainly restricted to graphics processing. The

processor cores and memory inside GPUs were all designed and optimized to be good

at pixel shading – so much so that the cores were termed as shaders. All the processing

elements executed the same instruction in parallel on an independent pixel element

in a Single Instruction Multiple Data (SIMD) manner. Since 2000s, researchers have

found ways to utilize the massively parallel power of GPUs for general purpose scientific

computations [15] and in the last decade this has gained significant traction. To be

suitable for general purpose computations, GPUs have undergone significant evolution

in terms of both hardware and the associated software infrastructure. Such GPUs are

commonly referred to as General Purpose GPUs (GPGPUs). Today GPGPUs have

become a key component in High Performance Computing (HPC) setups. In the June

2013 list of the top 500 supercomputers, 16 of the top 100 supercomputers contain

both CPU and GPU processors [40]. This has led to an enormous amount of research

and development efforts towards a software ecosystem (mainly compilers and runtime

libraries) for GPGPUs, that can achieve better performance, improve their ease of use,

and integrate them with the CPU as a seamless heterogeneous system. From now on,

we just use the term GPU to refer to GPGPU.

1

Chapter 1. Introduction 2

Figure 1.1: Multi-GPU machine setup (Photo Courtesy: AMD)

1.2 Towards Multi-GPU machines

Once the benefits of using GPUs became clear, scientists and researchers started using

more than one GPU on a single machine to further increase its computing capacity.

Today, multi-GPU machines are becoming commonplace in HPC setups. These machines

are being used both as standalone workstations to run computations on medium to large

data sizes (tens of gigabytes) and as a node in a CPU-MultiGPU cluster handling very

large data sizes (hundreds of gigabytes to a few terabytes).

A schematic diagram of a multi-GPU machine is shown in Figure 1.1. It consists of

a host CPU and one or more GPUs connected on the PCIex slots. The CPU memory

(DDR RAM) is connected through the memory controller (North bridge). The PCIex

bus that interconnects the GPUs also connects to the north bridge. However, each of

the GPUs have their own memory, and they do not share the address space with either

the CPU or with other GPUs. Hence, all the data needed by the computations has

to be explicitly copied from the CPU onto each GPU before computations are run and

Chapter 1. Introduction 3

once the computations complete, the results have to be explicitly copied back. When-

ever the computations on a GPU update their own memory, the updations have to be

synchronized across all the GPUs through inter-device data transfers in order to satisfy

the program dependences.

1.3 Programming challenges on a multi-GPU ma-

chine

Programming a multi-GPU machine to efficiently utilize its combined power is not

straight forward. Programmers have to address multiple non-trivial challenges. In this

section we briefly review the important ones.

1.3.1 Computation partitioning and load balancing

In order to utilize the combined processing power of all the GPUs, the computations have

to be partitioned into tasks and each task has to be scheduled on the available GPUs.

The data required for these computations has to be explicitly copied to each GPU. Also,

to ensure that the compute resources are optimally utilized, the partitioning has to be

load balanced according to the capability of each GPU.

1.3.2 Data allocation and buffer management

Once the tasks have been distributed onto the GPUs, the data required by a task have to

be allocated on the GPU on which it runs. GPUs have limited memory – typically 3 to

6 GB. Hence, applications working on data sizes larger than this size cannot allocate their

entire data on a single GPU. In a multi-GPU machine, even if the combined memory size

of the GPUs is larger than the data size, utilizing them to work on data sizes proportional

to the combined memory size is currently not an easy task. Also, inorder to maximize

the utilization of the available GPU memory the buffers already allocated on the GPU

have to be tracked and reused so that there is no redundant allocation and the associated

Chapter 1. Introduction 4

data transfers.

1.3.3 Inter-GPU data movement

The GPUs within a node are physically connected on the PCIex bus which has a peak

unidirectional and bidirectional bandwidth of 8 GB/s and 16 GB/s respectively. Because

of this, inter-GPU data movement becomes the bottleneck when the amount of data

transferred between devices is significant. Inefficient data movement schemes can result

in cost overhead which overcomes the benefit of computation distribution onto multiple

GPUs. Hence minimizing the data movement between GPUs is of paramount importance

to minimize the overall execution time. Also, for many programs even minimal data

movement volume has significant overhead. One can instead try to hide the overhead by

overlapping data movement within the computation time. To achieve a high degree of

scalability, this overlap has to be maximized such that all the data movement complete

while the computations are still going on.

1.3.4 Existing approaches

Traditionally these challenges have been tackled using manual and application specific

techniques. This generally involves an expert programmer manually partitioning the

computation and/or data, after studying the nature of the problem and distributing

these partitions to the available compute devices. This effort is tedious, error prone and

time consuming. To ease the effort involved in efficient programming of single/multi-

GPU setups, current and past research has tried to automatically handle one or more

of the sub-challenges. Some works [4, 5, 23, 24, 41] propose automatic code generation

techniques that generate GPU code usually in terms of CUDA [11] or OpenCL [27].

Other works [3, 18, 19, 21, 35, 36] propose runtime techniques to handle task placement

and scheduling, data allocation and inter-device data movement. Recent proposals like

OpenACC [26] and some proprietary compilers [34, 42] target ease of programming

through directive based approach similar to OpenMP. They provide a set of computation

Chapter 1. Introduction 5

and data directives which can be used to annotate the application. The compiler then

automatically generates the GPU code and code for the necessary data transfers.

1.4 Affine loop nests

Affine loop nests are loop nests that have affine bounds and the array access functions

in the computation statements are affine. A significant body of scientific applications

that utilize multi-GPU machines contain computations inside affine loop nests. These

include stencils, linear-algebra kernels, dynamic programming codes and data-mining

applications. The work presented in this thesis is applicable to all of these.

1.4.1 Running affine loop nests on multi-GPU machine

To run affine loop nests with large datasets on a multi-GPU machine and achieve scalable

performance, one has to perform the following steps efficiently:

1. Break up the loop computations into smaller, parallel task units called tiles and

distribute them across multiple GPUs.

2. Allocate the array data required by each tile on the GPU on which the tile executes.

3. Perform the computations on each GPU in parallel.

4. Once the computations are run, perform the data transfers which are required to

maintain coherency between GPUs.

5. Aggregate the final results from the GPUs onto the host CPU.

1.5 Need for a multi-GPU memory manager

Data allocation, buffer management, and coherency handling is a critical part of the

above steps. From this aspect, currently, applications utilizing multiple GPUs resort to

manual programming efforts which are often tedious, time consuming and error-prone.

Chapter 1. Introduction 6

Existing works in this area are either manual, application-specific techniques [3, 11, 26],

or automatic schemes [21] that have limitations and inefficiencies in terms of allocation

sizes, reuse exploitation, coherency costs and scalability. Hence, an automatic memory

management framework for multi-GPU machines that can overcome these shortcomings

and enable applications to achieve scalable performance is much needed. In this thesis,

we present the design of such an automatic multi-GPU memory manager that embeds

itself into steps (2), (4) and (5) above, and performs those tasks efficiently on behalf of

the application.

1.5.1 Desired capabilities

An important metric in measuring the effectiveness of a multi-GPU memory manager is

its ability to allow applications to maximize the utilization of GPU memory. It should

enable applications to work with large dataset sizes proportional to the combined GPU

memory size without any loss in performance. We will refer to this scaling requirement as

data scaling. Data scaling can be seen as a form of weak scaling but has an emphasis on

data size (memory utilization) rather than on the workload (computation). This notion

of weak scaling is more precise in the context of our work as we will see.

In order to achieve high degree of data scaling, an automatic memory manager should

have the following abilities:

� To identify and minimize data allocation sizes for a tile such that the data required

by a tile fits within individual GPU memory. Any scheme chosen to achieve this,

must also ensure that the cost of accessing the data from a smaller buffer is not

significant.

� To identify the data already present on a GPU and reuse it across tiles, thereby

minimizing redundant allocations and CPU-GPU data movement costs.

� To keep the data transfers minimal and efficient to reduce overhead.

� To ensure that the overhead of achieving the above tasks do not adversely affect

overall execution time of the program.

Chapter 1. Introduction 7

1.6 Bounding Box based Memory Manager

One technique that has been used in certain memory management contexts in the liter-

ature is that of bounding boxes [4, 21]. Bounding box of an array, for a given tile, is the

smallest hyper-rectangle that encapsulates all the array elements accessed by that tile.

Bounding boxes have been mainly used due to the simplicity of accessing the elements

in them. In this thesis, we exploit the potential of bounding boxes for memory manage-

ment far beyond their current usage in the literature, while providing the following key

insights:

� Bounding boxes can be subjected to standard set operations like union, intersection,

difference etc, at runtime merely by performing simple checks and arithmetic on

their vertices.

� GPUs are architecturally designed to be efficient at copying rectangular regions of

memory.

With the above insights in mind, we propose the Bounding Box based Memory Man-

ager (BBMM). BBMM is a scalable and fully automatic compiler-assisted runtime mem-

ory manager for multi-GPU systems. At compile time, it uses static analysis techniques

to identify a set of bounding boxes accessed by a computation tile. At runtime, BBMM

uses the bounding box set operations to compute a set of disjoint bounding boxes from

the set of bounding boxes identified at compile time. This reduces unnecessary and

redundant memory allocations. These disjoint bounding boxes are then tracked on a

per GPU basis that allows it to maximize inter-tile data reuse and minimize CPU-GPU

data movement overhead. All data transfers are performed in terms of bounding boxes

thereby exploiting the architectural benefits provided by the GPUs. The runtime oper-

ations incur negligible overhead.

1.7 Contributions

The main contributions of this thesis are as follows:

Chapter 1. Introduction 8

� We present the design of a fully automatic, efficient, and highly scalable memory

manager for affine loop nests on multi-GPU machines.

� We present a compiler-assisted runtime algorithm to store and manage accessed

array data as a set of disjoint bounding boxes.

� We present a runtime buffer management scheme that allows applications to (1)

maximize inter-tile data reuse thereby maximizing memory utilization and min-

imizing CPU-GPU data movements, (2) work with data sizes greater than the

combined memory size of the GPUs.

� We present an efficient inter-GPU data movement technique that (1) minimizes the

volume of data moved due to flow dependences (2) performs all copies efficiently in

terms of bounding boxes by exploiting the architectural capability provided by the

GPUs (3) maximizes compute-copy overlap and helps to further reduce the data

movement overhead.

� Experiments on a system with four GPUs and large dataset sizes showed that,

BBMM was able to achieve reduction in data allocation sizes of up to 75% compared

to current allocation schemes, achieve at least 88% of the performance of hand-

optimized code, and achieve excellent weak scaling.

The rest of this thesis is organized as follows. Chapter 2 gives examples to motivate

the important techniques proposed in the thesis. Chapter 3 presents the necessary back-

ground material. Chapter 4 is the central chapter of this thesis. It describes the data

allocation, buffer management and data movement schemes of BBMM along with the

implementation details, experimental results and analysis. Chapter 5 gives more details

about the data movement technique used in BBMM and presents the detailed results. It

also describes a new technique for maximizing compute-copy overlap and presents the re-

sults for the same. Chapter 6 discusses related work and Chapter 7 provides conclusions

and future work.

Chapter 2

Motivating Example

In this chapter, we present motivating examples that gives the readers a more concrete

view of the ideas introduced in the previous chapter. We first provide a brief discussion

of the general structure of the code that runs on a multi-GPU machine. We then take

Floyd-Warshall algorithm as an example program and illustrate various contributions

of this work such as the data allocation scheme, the inter-GPU coherency scheme, and

the benefits of inter-tile data reuse. We also motivate the readers to the benefits of our

techniques by providing comparative numbers on a sample tile size.

2.1 General structure of affine programs running on

a multi-GPU machine

An affine program can consist of one or more arbitrarily nested affine loop nests. For

an affine loop nest to be suitable to run on a GPU setup, it has to have at least one

parallel loop dimension (preferably a parallel band of two or three loops). The parallel

loop band can be surrounded by zero or more outer serial loops. Inside the parallel

band, there can be more loop dimensions. Each iteration of the parallel band can be

executed independently on a GPU thread. The parallel band can be tiled to appropriate

size based on the GPU capabilities.

9

Chapter 2. Motivating Example 10

Figure 2.1 illustrates the general structure of a single affine loop nest for a multi-

GPU machine. In a program with multiple independent affine loop nests, this structure

is repeated for each of them. The execution begins on the host CPU with the outermost

serial loop (if it exists) as shown in line 11. For each surrounding serial loop iteration, the

tiles of the parallel band are distributed among the available GPUs (line 13). For each

tile assigned to a GPU, the data allocation function is called to allocate the necessary

data for the tile (line 4). This function is in turn implemented by a memory manager

which performs the actual allocations based on its internal schemes. Once the data is

ready, the computation kernel is launched. After a tile finishes computation, explicit

inter-GPU data movement has to be performed (henceforth referred to as coherency) to

ensure that data allocated across GPUs are in sync before the next serial iteration (line

6). This involves two distinct data transfers. The coherency data has to be first copied

out of the source GPU that updated the data onto the host CPU. We call it the flow-out

transfer (described later in Section 4.5). This data has to be then updated onto the

GPUs that need it in the subsequent serial iterations. This is called the flow-in transfer.

Implementing the coherency scheme efficiently is again the job of the memory manager.

At the end of all iterations, the result is aggregated from all GPUs onto the host CPU.

2.2 Floyd-Warshall algorithm

The floyd-warshall algorithm computes the shortest-path between every pair of ver-

tices in a directed weighted graph. The input to the algorithm is a path matrix, which

is initialized to the cost of edges between a pair of vertices if it exists and infinity

otherwise. In each iteration, the algorithm finds the shortest path between any two

vertices, passing through a pivot vertex considered in that iteration. This is computed

as the minimum value of the current path weight, and the sum of the path weights

of the source to pivot and pivot to the destination. Figure 2.2 shows the code for

floyd-warshall. It has an outer serial loop k and inner parallel loops i and j. It

has a single path array and three distinct access functions, path[i][j], path[i][k],

Chapter 2. Motivating Example 11

1 void gpu mgmt thread(Device * gpu)
2 {
3 for(tid=gpu−>stile;tid<=gpu−>etile;tid++) {
4 allocate data(gpu, tid);
5 launch kernel(gpu, tid);
6 perform coherency(gpu, tid);
7 }
8 }
9 int main()

10 {
11 for(ser=0; ser < NUM ITER; ser++) {
12 for(i=0;i<NUM GPUS;i++) {
13 distribute parallel loop(i,&gpu[i].stile,&gpu[i].etile);
14 spawn thread(&gpu[i], gpu mgmt thread);
15 }
16 synchronize mgmt threads();
17 }
18 aggregate results();
19 ...
20 // more affine loop nests can follow with the same

structure
21 }

Distribute

parallel loop

tiles among the

GPUs

Perform

inter-gpu

coherency

CPU

GPU 1

GPU 2

Tile 1

Tile 2

Allocate data

required by

each tille

Data for

Tile 1

Data for

Tile 2

GPU TO

CPU COPY

(flow-out)

CPU TO

GPU COPY

(flow-in)

Coherency

data

from TIle 1

Figure 2.1: General structure of an affine loop nest for a multi-GPU machine

path[k][j]. floyd-warshall has non-uniform array access patterns. Hence, depending

on the value of k, these access functions access regions of array that either intersect or

are disjoint. Figure 2.3a shows the iteration space for floyd-warshall with N set to 8 and

k set to 7. A tile of size 4 x 8 is highlighted. When k is 7, the regions of array accessed

by this tile with path[i][j] and path[i][k] overlap, whereas the region accessed with

path[k][j] is disjoint from the other two (Figure 2.3b).

2.2.1 Per-tile data allocation

To allocate data for the tile, BBMM first identifies the regions of path array accessed

by this tile in terms of bounding boxes (called the initial bounding boxes) as shown in

Figure 2.3c. Some works in the literature [4, 21] propose to allocate the bounding box

over the convex hull of the accessed array regions. Such a scheme would end up allocating

the entire array as shown in Figure 2.3d, even though the actual region accessed by the

tile is much smaller. BBMM however, performs set operations such as union, intersection,

Chapter 2. Motivating Example 12

f o r (k=0; k<N; k++) /* outer s e r i a l loop */
f o r (i =0; i<N; i++) /* outer most p a r a l l e l loop */

f o r (j =0; j<N; j++)
path [i] [j]=((path [i] [k]+path [k] [j])<path [i] [j]) ? path [i] [k]

+path [k] [j] : path [i] [j] ;

Figure 2.2: Floyd-Warshall code

Computation Tile Exact Accessed Region Bounding Box

j

i

tile size = 4 x 8

(a) Iteration space of a
tile (size: 4 x 8, k=7)

j

i

path[i][k]path[i][j]

path

[k][j]

(b) Exact array regions ac-
cessed by the tile

j

i

path[i][k]path[i][j]

path

[k][j]

(c) Initial bounding boxes

j

i

BB0

(d) Convex bounding box

j

i

BB1

path

[k][j]

path

[i][j]

and

path

[i][k]

BB0

(e) Disjoint bounding boxes

j

i

path array

(f) Coherency bounding
box (N=8,k=1)

 0

 100

 200

 300

 400

 500

 600

 700

Array Exact Convex Disjoint

S
iz

e
in

 B
y

te
s

Data Allocation Schemes

(g) Per-tile data allocation
size

 0

 100

 200

 300

 400

 500

Exact Block−Coherency BBMM

V
o

lu
m

e
in

 b
y
te

s

Coherence Schemes

(h) Per-iteration co-
herency volume

Figure 2.3: Per-tile data allocation, coherency and reuse exploitation on floyd-warshall

Chapter 2. Motivating Example 13

difference etc on these initial bounding boxes and allocates the data required by the tile

in terms of disjoint bounding boxes. Figure 2.3e shows the two disjoint bounding boxes

for the tile – one for path[i][j] and path[i][k] combined and another disjoint one

for path[k][j]. The combined size of the disjoint bounding boxes is much smaller than

the bounding box for the convex one as shown in Figure 2.3g and equal to the exact

array regions accessed by the tile.

2.2.2 Inter-GPU coherency

Dependence analysis of floyd-warshall can show that, in the kth iteration, a GPU reads

the elements of the kth row, which would have been updated possibly by another GPU,

in k − 1th iteration. Hence to maintain coherency, at the end of k − 1th iteration, this

row has to be transferred from the source GPU that updated it to all other GPUs. For

example, when k is 1, the row highlighted in Figure 2.3f needs to be synced with other

GPUs. However, the coherency schemes used in the closely related works [21] transfer

the entire data allocation block which contain at least one updated element (henceforth

referred to as block-coherency scheme). In our example, this is the bounding box of

path[i][j] in the best case (which by itself is much larger than the actual amount

of data that need to be synchronized), and almost the entire array in the worst case

i.e, when k is 6. Figure 2.3h shows the comparison of data movement volume due to

coherency considering only the best case. Even in the best case, there is a difference of

8× between the block-coherency scheme and the exact volume required.

2.2.3 Exploiting inter-tile reuse

For values of k between 0 and 3, the bounding box required by path[k][j] is already

allocated on the GPU as part of the bounding box for path[i][j] (allocated when k

was 0). BBMM can very easily detect such data which is already present on the GPU

using the subset and superset relationship on bounding boxes. As we show later in the

results, many programs perform significantly better with reuse exploitation.

Chapter 3

Background

In this chapter, we briefly review the background required for the understanding of the

work presented in the thesis. Section 3.1 provides an overview of the GPU architecture.

Section 3.2 provides an overview of OpenCL along with a sample program. Section 3.3

provides a brief overview of the Polyhedral framework used in some of the techniques

presented in the thesis.

3.1 Overview of GPU architecture

In this section, we briefly give an overview of GPU architecture by taking NVIDIA’s

fermi [13] as the example. Though different GPUs differ slightly in capabilities depending

on the workload and cost, the underlying hardware elements do not differ significantly.

3.1.1 NVIDIA Fermi GPU architecture

Compute architecture

Fermi consists of a set of 16 streaming multiprocessors (SM), with each SM containing

32 CUDA cores making a total of 512 cores. Each CUDA core consists of a register

file with 32,768 32-bit registers, a fully pipelined integer and floating point unit. The

floating point unit supports the fused multiply and add (FMA) for both single and double

14

Chapter 3. Background 15

(a) Fermi overall architecture (b) Fermi streaming multiprocessor

Figure 3.1: Fermi Architecture (Courtesy:NVIDIA)

precision arithmetic. Each SM also consists of 16 load/store units and 4 special function

units for executing instructions like sine and cosine. The SM schedules threads in groups

of 32 parallel threads called warps. Each SM features two warp schedulers and two

instruction dispatch units, allowing two warps to be issued and executed concurrently.

Memory architecture

Fermi has six 64-bit DRAM memory modules, connected through a 384-bit memory

interface. This can support up to 6 GB of global memory that is visible across all

SMs. Each SM also has 64 KB of on-chip memory that can be configured either as

48 KB of Shared memory with 16 KB of L1 cache or as 16 KB of Shared memory with

48 KB of L1 cache. It also has a 768 KB of the L2 cache which is shared across all the

SMs. GPU memories generally have high bandwidth, but significant latency. Hence, the

optimal utilization of memory bandwidth can occur when the accesses to the memory

are coalesced ; i.e, adjacent threads in a warp access adjacent elements in memory.

Chapter 3. Background 16

Code execution and data availability

The current GPU architectures including the Fermi, can only work as a co-processor for

a host CPU. The GPU itself cannot initiate a program execution. The code that runs

on the GPU is referred to as the kernel. The host CPU is responsible for scheduling the

execution of a kernel on the GPU. Also, GPUs do not share the address space with the

host CPU. Hence, the data required by a kernel has to be explicitly copied from the CPU’s

memory to GPU’s memory. Once the kernel completes execution, the responsibility of

copying the results from GPU to CPU rests with the CPU.

Synchronization and consistency

GPUs provide the following two methods of synchronization.

� Threads within a SM can synchronize using barrier synchronization primitives.

� Threads across SMs can synchronize by implementing synchronization primitives

such as mutexes, with the help of atomic operations such as atomic compare and

swap, provided by the GPU.

GPUs only guarantee a relaxed consistency model [16]. Threads within a single SM

can share data efficiently using the fast barrier synchronization primitives. However, for

threads across SMs, the changes made by threads of one SM is only guaranteed to be

visible to threads of other SMs only across kernel calls.

Communication between host and GPU

The communication between the Host and the GPU involves the following three compo-

nents: PCIe bus, Command Processor, and DMA transfers.

PCI-express bus Communication and data transfers between the system and the

GPU compute device occur on the PCIex channel. Generation 1 x16 has a theoreti-

cal maximum throughput of 4 GB/s in each direction. Generation 2 x16 doubles the

throughput to 8 GB/s in each direction. Transfers from the system to the GPU compute

Chapter 3. Background 17

device are done either by the command processor or by the DMA engine. The GPU

compute device also can read and write system memory directly from the compute unit

through kernel instructions over the PCIe bus.

The command processor The host application interacts with the OpenCL devices,

through an intermediate driver layer that sends the commands to the hardware on behalf

of the application. The commands to the GPU compute device are first buffered in a

command queue on the host side. The command queue is then sent to the GPU compute

device and processed by it. The commands are executed inorder unless explicitly specified

otherwise.

DMA transfers Direct Memory Access (DMA) memory transfers can be executed

separately from the command queue using the DMA engine on the GPU compute de-

vice. DMA calls are executed immediately and the order of DMA calls and command

queue flushes is guaranteed. DMA transfers are executed concurrently with other GPU

operations. Due to this, DMA transfers can be potentially used as a source of parallelism.

3.2 OpenCL programming model

In order to ease the effort involved in programming heterogeneous architectures, an in-

dustry consortium [20] consisting of major CPU/GPU vendors proposed OpenCL (Open

Compute Language) [27] as a unified programming language. OpenCL - a dialect of

C/C++, is a framework for writing programs that execute across heterogeneous plat-

forms consisting of CPUs, GPUs, DSPs and other processors. OpenCL provides a logical

architecture and an API, which all compute device vendors supporting OpenCL have to

implement. This frees up the programmer from knowing the details of each vendor

architecture and focus on the application logic.

3.2.1 OpenCL terminologies

Work-item The smallest unit of work on an OpenCL device.

Chapter 3. Background 18

Work-group A collection of work-items, all of which are mapped to the same SM.

Wavefront A collection of work-items which execute simultaneously in a single lock-

step. A wavefront is also known as a warp.

NDRange The arrangement of work-groups and work-items into a n-dimensional grid.

Kernel The C code that contains the computation logic and executed by a work-item.

Context The environment within which work-items execute. This includes devices

and their memories and command queues.

Compute device The OpenCL device that executes the kernel.

Command queue A structure into which all the commands sent to a compute device

are queued.

3.2.2 OpenCL memory hierarchy

OpenCL has four memory domains: private, local, global, and constant.

Private memory specific to a work-item and not visible to other work-items.

Local memory specific to a work-group and accessible only by work-items belonging

to that work-group.

Global memory accessible to all work-items executing in a context, as well as to the

host (read, write, and map commands).

Constant memory read-only region for host-allocated and initialized objects that are

not changed during kernel execution.

Chapter 3. Background 19

Host (CPU) Memory host-accessible region for an application’s data structures and

program data.

An OpenCL program consists of a host part and a kernel part. The host code is

run on a CPU which hosts the compute devices and performs the tasks of managing the

compute devices, scheduling computations on them, transferring data to/from them, and

aggregating the final computed result. The host CPU can also act as a compute device.

The kernel code contains the actual computations and are run on the compute devices.

The compute devices are exposed to the programmer in terms of logical threads, which

are in turn grouped into thread-blocks. The computations are mapped onto these threads

and thread-blocks such that each thread performs computations on a small portion of

data in parallel with other threads in a SIMD manner. Each compute device have

their own memory space. The data required by the computations have to be explicitly

allocated on each compute device and doing this is the responsibility of the host CPU.

Once computations are performed, the results have to be explicitly copied from compute

device memory onto the host CPU memory. For a more detailed specification of the

OpenCL standard and the API, the reader is referred to the Khronos website [27].

3.2.3 OpenCL runtime API

Device, Context, and Command queue The context is the primary manage-

ment structure of OpenCL. A context encapsulates one or more devices, along with

their command queues and the kernel to be run. A context can be created using

clCreateContext(). The OpenCL devices of a particular type (CPU, GPU etc) can

be discovered using the clGetDeviceIDs() function. A command queue can be created

under a context using the clCreateCommandQueue(). Command queues can either be

configured to process the messages inorder or out-of-order.

Kernel creation and launch OpenCL program may be created from source using

clCreateProgramWithSource() or loaded as binaries using clCreateProgramWithBinary().

In either case this must be followed by clBuildProgram(). The OpenCL compiler may

Chapter 3. Background 20

be a dynamically linked library. A kernel can be created using clCreateKernel() func-

tion. Arguments can be passed to the kernel using clSetKernelArg().

Memory management Global memory is allocated using clCreateBuffer(). Memory

can be created with MEM READ ONLY, MEM WRITE ONLY, MEM READ WRITE

flags. Memory is freed using clReleaseMemObject(). Variables can be allocated on the

on-chip local memory by annotating the variables with the local qualifier.

Data transfers Data can be transferred from the CPU to the GPU and vice-versa us-

ing the clEnqueueReadBuffer() and clEnqueueWriteBuffer(). Another technique is

to map the GPU’s device buffer into CPU’s address space using the clEnqueueMapBuffer()

and once the memory is mapped, data can be read and written from the GPU using the

regular memcpy() function. However, mapping the GPU buffer performs a copy of the

data from the GPU into the CPU buffer. This is an expensive operation and should

be avoided unless absolutely required. OpenCL also provides functions to transfer a

non-contiguous rectangular region of memory using clEnqueueReadBufferRect() and

clEnqueueWriteBufferRect() functions. This is a crucial capability we use in our work.

3.2.4 Sample OpenCL code

Figure 3.2 shows the floyd-warshall code as it is typically written in C for the CPU.

The memory for the path array can be can be allocated either on the data segment

through global declaration, or on the heap through dynamic allocation. The program

consists of three loops - k, x and y. A quick dependence analysis can show that the k

loop is serial while the y and x loop can be run in parallel.

Figure 3.3 and Figure 3.4 show the the OpenCL equivalent code for the same. The

code consists of a host part and the kernel part. The execution of the program begins

with the host code obtaining the OpenCL platform id and the device list. Then it goes on

to create a context and a command queue for the chosen compute devices. The memory

for the path array is explicitly allocated on the GPU’s global memory. This is followed

Chapter 3. Background 21

1 void Floyd()

2 {

3 int x, k, y;

4
5 for(k=0; k < NUM_NODES; k++)

6 {

7 for(y=0; y < NUM_NODES; y++)

8 {

9 for(x=0; x < NUM_NODES; x++)

10 {

11 path[y][x] = ((path[y][k] + path[k][x]) < path[y][x]) ? (path[y][k] + path[k

][x]):path[y][x];

12 }

13 }

14 }

15 }

Figure 3.2: floyd-warshall code on cpu

by choosing of the right sizes for the NDRange.

Among the three loops of floyd-warshall, the k loop is run on the CPU sequentially,

and for each iteration of this loop, the y and x loops are executed on the GPU in a

DOALL parallel manner. Figure 3.4 shows the structure of the OpenCL kernel. As we

can see, each array index is mapped to a thread in the OpenCL n-dimensional(2D in

this case) grid. Each thread now executes one instance of the statement corresponding

to its index in each dimension. At the end of execution of all serial iterations the result

is copied explicitly from the GPU onto the CPU result buffer.

3.3 Polyhedral model

The polyhedral model provides a framework to compactly capture the execution sequence

of statements present inside arbitrarily nested affine loops. The model provides a way

to represent, analyze, and transform iterations of affine loop nests by treating them as

integer points inside a convex polyhedron. For a statement inside an affine loop nest,

the surrounding loop iterators along with program parameters form the dimensions of

the polyhedron that represents the statement’s execution domain. The upper and lower

bounds of each loop iterator are represented as linear inequalities. These inequalities form

Chapter 3. Background 22

1 void launch_opencl_kernel()

2 {

3 clGetPlatformInfo(platform_id,CL_PLATFORM_VERSION,sizeof(str_temp),str_temp,NULL);

4 clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_GPU, 2, &device_id[0], &num_devices);

5 clGetDeviceInfo(device_id[1],CL_DEVICE_NAME, sizeof(str_temp), str_temp,NULL);

6
7 clGPUContext = clCreateContext(NULL, 1, &device_id[1], NULL, NULL, &errcode);

8
9 clCommandQueue = clCreateCommandQueue(clGPUContext, device_id[1], 0, &errcode);

10
11 path_mem_obj = clCreateBuffer(clGPUContext, CL_MEM_READ_WRITE, NUM_NODES *

NUM_NODES * sizeof(DATA_TYPE), NULL, &errcode);

12
13 localWorkSize[0] = 16; localWorkSize[1] = 16;

14 globalWorkSize[0] = NUM_NODES; globalWorkSize[1] = NUM_NODES;

15
16 for(t1 = 0; t1 < NUM_NODES; t1 ++)

17 {

18 errcode = clSetKernelArg(clKernel, 0, sizeof(cl_mem), (void *)&path_mem_obj);

19 errcode = clSetKernelArg(clKernel, 1, sizeof(cl_int), &t1);

20 errcode |= clSetKernelArg(clKernel, 2, sizeof(cl_int), &NUM_NODES);

21
22 errcode = clEnqueueNDRangeKernel(clCommandQueue, clKernel, 2, NULL,

globalWorkSize, localWorkSize, 0, NULL, NULL);

23
24 clFinish(clCommandQue);

25 }

26
27 errcode = clEnqueueReadBuffer(clCommandQue, path_mem_obj, CL_TRUE, 0, NUM_NODES*

NUM_NODES*sizeof(DATA_TYPE), &path_outputFromGpu[0][0], 0, NULL, NULL);

28 }

Figure 3.3: floyd-warshall opencl host code

1 __kernel void computeKernel(__global DATA_TYPE * pdm, uint numNodes, uint my_rank,

int my_start, int my_end, int t1)

2 {

3 int xValue = get_global_id(0);

4 int yValue = get_global_id(1);

5
6 int k = t1;

7
8 DATA_TYPE oldWeight = pdm[yValue * numNodes + xValue];

9 DATA_TYPE tempWeight = (pdm[yValue * numNodes + k] + pdm[k * numNodes + xValue]);

10
11 if (tempWeight < oldWeight) {

12 pdm[yValue * numNodes + xValue] = tempWeight;

13 }

14 }

Figure 3.4: floyd-warshall opencl kernel code

Chapter 3. Background 23

1 for (i=0; i<N; i++)

2 for (j=0; j<N; j++)

3 A[i][j]= A[i+1][j]+A[i-1][j]; /* computation statement */

Figure 3.5: Sample affine loop code

j

i

i−N < 0

i > 0

j −N < 0j > 0

Figure 3.6: Polyhedral representation of a simple loop

the faces of the polyhedron. The set of all integer points inside a polyhedron formed

by the bounds of the loop iterators surrounding a statement is called the iteration space

of the statement. Each point in an iteration space is called an iteration vector, and is

represented by a n-tuple, where n is the dimensionality of the iteration space. In an affine

loop nest, all array accesses in the computation statements have to be affine functions of

the outer loop iterators and program parameters. Such an affine function which is used

as a subscript to access the elements of an array is called as an access function. The set

of all array elements accessed by an individual access function is called the data space

of the access function. The polyhedral framework provides libraries to perform various

operations such as union, intersection, difference on these polyhedra [17, 33]. For more

details on the polyhedral framework, the readers are referred to [6].

Figure 3.5 shows a two dimensional affine loop nest with a single computation state-

ment. As we can see, the loop bounds and the array subscripts are all affine functions of

the loop variables i and j. N is the program parameter whose value at runtime deter-

mines the exact number of points in the iteration space. Figure 3.6 shows the polyhedral

representation of the iteration space of this statement. For ease of depiction, we have

chosen N to be 8. The linear inequalities that form the bounds of the iteration space are

also shown. Array subscripts i, i+ 1, i− 1, and j are the access functions.

Chapter 4

BBMM - Bounding Box Based

Memory Manager

This chapter forms the core part of this thesis – the Bounding Box based Memory

Manager. Section 4.1 begins with the definition of a bounding box, the key idea of

performing set operations on bounding boxes, the advantages using bounding boxes

for GPU memory management. Section 4.2 gives an overview of each component of

BBMM with an illustrative diagram. Section 4.3 describes the data allocation algorithms.

Section 4.4 describes the buffer management scheme. Section 4.5 gives the details of the

inter-GPU coherency scheme used in BBMM. Section 4.6 gives the overall structure of

the generated code and this is followed by sections containing experimental evaluation,

results and their detailed analysis.

4.1 Bounding boxes and set operations

In this section, we give the definition of bounding boxes, describe the core insights about

performing set operations on them. We then justify the the advantages of using bounding

boxes for GPU memory management.

Bounding box : BBMM allocates and manages data in terms hyper-rectangles. A

hyper-rectangle is an n-dimensional counterpart of a rectangle, i.e., it has two parallel

24

Chapter 4. BBMM - Bounding Box Based Memory Manager 25

faces for each dimension that bound the rectangle along that dimension. The smallest

hyper-rectangle encapsulating a point set is called the bounding box of that set. In our

context, a bounding box is the smallest hyper-rectangle encapsulating the elements of

a multi-dimensional array which are read or written through an access function in a

computation statement of a program.

Function Name Description Overhead Illustration
bb convex union() Gives the convex

hull of the array el-
ements in the two
bounding boxes

two bound checks in
each dimension

bb simple union() Performs the union
of the array ele-
ments in the two
bounding boxes

simple append, dimen-
sion independent

bb intersection() Performs an in-
tersection of two
bounding boxes

at most eight bound
checks in each dimen-
sion

bb subtract() Subtracts one
bounding box from
another, returning
a simple union of
bounding boxes

four assignments (two
cuts) in each dimen-
sion

bb is subset() Checks if one
bounding box is a
subset of another

two bound checks in
each dimension

Table 4.1: Set operations of BBMM and their overhead

Set operation on bounding boxes : The integer points inside the bounding boxes can

be subjected to common set operations like union, intersection, difference, finding subset

and superset relations. Table 4.1 lists and illustrates these operations. Using them,

BBMM can perform various memory optimizations such as refining compiler generated

Chapter 4. BBMM - Bounding Box Based Memory Manager 26

bounding boxes, exploiting inter-tile reuse, minimizing data movement overhead etc.

Note that subtraction can create multiple bounding boxes. In such cases, a simple union

of these is returned. All functions of BBMM work on a simple union of bounding boxes.

The following are the advantages of using bounding boxes for GPU memory manage-

ment.

1. Negligible runtime overhead : One key advantage of working with bounding boxes

is that the set operations can be done at runtime merely by performing simple

checks and arithmetic on their vertices. For an n-dimensional bounding box, one

needs to operate on 2n vertices. As we deal with values of n that are small enough

(even for a rare case of a 5D array one needs to perform simple operations on just

32 vertices), these operations have negligible runtime overheads. This allows it to

scale easily to manage a large number of GPUs.

2. Simplicity and low cost of access functions : An array element present in a bounding

box can be accessed by simply subtracting the lower bound offsets of the bounding

box from the array index in each dimension. For example, for any array a, an

element a[i][j] present in a bounding box {lbi, ubi, lbj, ubj} can be accessed

by subtracting the lower bounds from each dimension, i.e., as a[i-lbi][j-lbj],

where lbi and lbj are lower bounds of the bounding box along dimension i and j

respectively.

3. Architectural support for rectangular transfers on GPUs : GPUs (especially the ones

used in high performance computing) are architecturally designed to be efficient at

copying rectangular regions of memory to and from the CPU. The GPU program-

ming models such as OpenCL and CUDA expose this capability to the user by pro-

viding rectangular copy APIs; for example, OpenCL provides clEnqueueReadBufferRect()

and clEnqueueWriteBufferRect(). Using these APIs, we find that non-contiguous

(strided) rectangular transfers of data between CPU and GPU, are almost as ef-

ficient as transferring contiguous bytes (Figure 4.1). This may be due to internal

packing of non-contiguous elements before performing a single DMA to transfer

Chapter 4. BBMM - Bounding Box Based Memory Manager 27

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

512 1K 2K 4K 8K

T
im

e
(s

ec
o
n

d
s)

N

Numbers taken on NVIDIA Tesla c2050

contiguous bytes read - N x N Bytes
non-contiguous (strided) rectangular read - N x N Bytes

diagonal elements read - N Bytes
lower triangular elements read - (N*(N+1)/2) Bytes

Figure 4.1: Data transfer time for various access shapes

it to destination buffers on the CPU. The same is done by the runtime driver

during CPU to GPU transfers. These non-contiguous rectangular transfers are

more efficient than performing multiple individual reads to transfer arbitrary non-

rectangular shaped regions (say a diagonal or a triangle) of much smaller size.

4. Non-scalability of precise data allocation techniques : Größlinger [14] proposed a

precise data allocation technique in the context of scratchpad memory manage-

ment. However, the cost of access functions computed through this technique can

become prohibitively high (elaborated in Chapter 6), thus making it impractical.

4.2 High-level overview of BBMM

In this section, we give a high-level view of the various components of BBMM. Figure 4.2

shows the inter-working of the input, the compile-time and the runtime components. The

figure has three distinct sections separated by two dashed lines. The first section shows

the input to BBMM. The second section depicts BBMM’s compile time component.

The third section depicts BBMM’s runtime component. The arrows indicate the order

of execution of each component and sub-component. Each section produces a specific

output which is used as input in the next section. Below we provide additional details

Chapter 4. BBMM - Bounding Box Based Memory Manager 28

for each component.

4.2.1 Input to BBMM - computation tile

BBMM expects the loop nests to be parallelized and tiled to suit GPU architectures.

Hence, the input sequential C code with affine loop nests is first passed through the

Pluto [31] auto-parallelizer. Pluto automatically identifies any parallelism present in

the loop nests and generates a tiled and parallelized version of the loop code. In our

framework, a parallelized loop nest has zero or more outer serial loops surrounding the

parallel loops. The serial loops are run on the host CPU which schedules the parallel

loops to run on the GPUs. The outermost parallel loop is broken down into pieces of

suitable sizes (tiles) and these tiles are distributed onto available GPUs. A tile therefore

is an iteration vector representing one iteration of the distributed parallel loop. All

algorithms in BBMM work at the granularity of a tile.

4.2.2 Compile time component

At compile time, BBMM takes a tile as input and extracts the parameterized bounding

boxes which are later refined and used at runtime. These bounding boxes are param-

eterized on the input tile and array. The compile-time generates the application code

that refine these bounding boxes at runtime and performs various buffer management

tasks. The code is generated in terms of calls to the BBMM’s runtime library. The

compile-time also generates the GPU kernel that accepts bounding boxes as parameters.

4.2.3 Runtime component

The runtime component of BBMM is the runtime library that is linked with the code

generated at compile time. The library consists of key functions of BBMM. This includes

� Hyper-rectangular set operations used to refine the bounding boxes and thereby

minimize memory allocation

Chapter 4. BBMM - Bounding Box Based Memory Manager 29

Sequential C

code with affine

loop nest

Pluto

parallelizer

Tiled and

Parallelized

code

Host code generated

in terms of parameterized

bounding boxes and BBMM

runtime library calls

GPU kernel code

Generated

host

application

code
OpenCL kernel

parameterized

for BBMM

Execute

on the host

CPU

Execute

on GPUs

Run Time

Compile Time

Disjoint

bounding box

computation

Buffer

Management

Inter-gpu

coherency

BBMM runtime library

Section 4.3.2 Section 4.4 Section 4.5

+

Figure 4.2: High-level overview of BBMM

Chapter 4. BBMM - Bounding Box Based Memory Manager 30

� Buffer management functions that track bounding boxes on a per GPU basis and

performs various memory optimizations

� Inter-gpu data movement functions that maintain coherency of data between GPUs

This runtime library is linked with the application code generated by the compile-time

stage and executed on the host CPU. The parameterized kernel is executed on the GPU

devices.

4.3 Data allocation scheme

In this section, we describe the data allocation scheme used in BBMM. The data allo-

cation scheme is responsible for identifying the regions of array accessed by a tile and

minimizing the memory allocated for it on the GPU. We propose a compiler-assisted

runtime data allocation scheme. At compile time, an initial set of bounding boxes - one

for each access function of the input tile is extracted. At runtime, these bounding boxes

are further refined into a set of disjoint bounding boxes.

4.3.1 Initial bounding box extraction at compile time

This is done using a simple polyhedral technique as shown in Algorithm 1. For each read

or write access function of the array, the algorithm invokes the following functions:

get data polyhedron(): Computes the data space by taking the image of the iteration

space over the access function.

get bounding box(): Computes the smallest hyper-rectangle encapsulating all the points

in the data space.

The set of bounding boxes returned are parameterized on the input tile and the array.

The initial bounding boxes extracted at this stage could completely or partially overlap

with one another. Hence, in order to avoid duplicate allocations, we need to refine these

initial bounding boxes into a set of disjoint bounding boxes. We note that this refinement

operation can be performed at compile time using the polyhedral library. However doing

Chapter 4. BBMM - Bounding Box Based Memory Manager 31

so at compile time might result in over-allocations since the library has to allocate for

the maximum value of the bounds to ensure correctness. Also, the library might choose

to perform a large number of splits depending on the type of initial bounding boxes. At

runtime, we have the precise bounds for the initial bounding boxes and as mentioned

before, the rectangular set operations can be performed with negligible overhead. Hence,

we choose to perform the bounding box refinement at runtime.

Algorithm 1: extract initial bounding boxes()

Input: Computation tile ~t, Array a
Sinit
a = φ1

for each read or write access function f i
a do2

dpia = get data polyhedron(f i
a)3

bbia = get bounding box(dpia)4

add bbia to Sinit
a5

Output: Sinit
a , the set of initial bounding boxes6

Algorithm 2: get disjoint bounding boxes()

Input: Sinit
a - Set of initial bounding boxes for tile ~t and array a

Sdisjoint
a = φ1

for each bounding box bbinita in Sinit
a do2

bbrema = bbinita3

for each bounding box bbdisja in Sdisjoint
a do4

bbintersecta = bb intersection(bbrema , bbdisja)5

bbrema = bb subtract(bbrema , bbintersecta)6

add bbrema to Sdisjoint
a7

Output: Sdisjoint
a , the set of disjoint bounding boxes for array a8

4.3.2 Disjoint set of bounding boxes at runtime

The key steps of the data allocation scheme are performed at runtime as shown in

Algorithm 2. The input is the set of initial bounding boxes now substituted with the

actual values for tile and array parameters (since we have this information at runtime).

On each of these exact bounding boxes, the algorithm uses the set operations described

in Table 4.1 to subtract out the portions which are already present in the set of disjoint

Chapter 4. BBMM - Bounding Box Based Memory Manager 32

bounding boxes. This is done as shown in lines 2 to 6. The portion that still remains is

added to the disjoint bounding box set.

4.3.3 Example

Figure 2.3 illustrates the data allocation scheme for floyd-warshall. Figure 2.3a shows

the iteration space of a single tile. For illustration purpose, we have chosen N = 8

and k = 7. Figure 2.3c shows the initial bounding boxes; one for each distinct access

function. path[i][j] covers an area equal to the size of the tile. path[i][k] covers

N − 1th column. path[k][j] covers the N − 1th row. Figure 4.3 shows the initial

bounding boxes as it looks in the generated code. The generated bounding boxes are

parameterized on the input tile represented by the iteration vector (t0, t1, t2, t3) and

the input array. The set of initial bounding boxes is input into Algorithm 2. Figure 2.3e

shows the result of running Algorithm 2 on initial bounding box list. For the chosen

tile, the bounding box of path[i][k] is a subset of the bounding box of path[i][j]

whereas bounding box of path[k][j] is disjoint from both. Hence the algorithm returns

two disjoint bounding boxes BB0 and BB1 as shown.

4.3.4 Discussion

Access function split and warp divergence: In some cases a single access function of an

array can get split among multiple bounding boxes due to the disjoint operation. In

these cases, a runtime check has to be made in the computation kernel on the GPU to

determine the bounding box which contains a particular array index. If different threads

of a warp have to access different bounding boxes, it will result in warp divergence

causing loss of parallelism. Though this seems like a problem in theory, in practice this

is not an issue due to the following reasons:

� For programs with uniform dependences like stencil computations, the adjacent

threads (forming the warp) access adjacent memory locations. Hence, they almost

always access data from the same bounding box, i.e., they take the same control

Chapter 4. BBMM - Bounding Box Based Memory Manager 33

1 list extract_initial_bounding_boxes_for_path_in_kernel_0(Device dev, int t0, int t1,

int t2, int t3, void * array)

2 {

3 // the iteration vector (t0,t1,t2,t3) represents the tile. t1 corresponds to the

4 // serial iteration k. t3 represents the tiled parallel dimension.

5

6 // path[i][j]

7 struct bounding_box * bb0 = bb_alloc(2);

8 bb0->array = array;

9 bb0->flags = BBMM_FLAGS_READ_WRITE;

10 bb0->bp[0].lb = (TILE_SIZE * t3) + (0);

11 bb0->bp[0].ub = (TILE_SIZE * t3) + ((TILE_SIZE-1));

12 bb0->bp[1].lb = 0;

13 bb0->bp[1].ub = +1*N-1;

14 add_to_list(&init_bb_list, bb0);

15 // path[i][k]

16 struct bounding_box * bb1 = bb_alloc(2);

17 bb1->flags = BBMM_FLAGS_READ;

18 bb1->array = array;

19 bb1->bp[0].lb = (TILE_SIZE * t3) + (0);

20 bb1->bp[0].ub = (TILE_SIZE * t3) + ((TILE_SIZE-1));

21 bb1->bp[1].lb = (1 * t1) + (0);

22 bb1->bp[1].ub = (1 * t1) + (0);

23 add_to_list(&init_bb_list, bb1);

24 // path[k][j]

25 struct bounding_box * bb2 = bb_alloc(2);

26 bb2->array = array;

27 bb2->flags = BBMM_FLAGS_READ | BBMM_FLAGS_CLEANUP;

28 bb2->bp[0].lb = (1 * t1) + (0);

29 bb2->bp[0].ub = (1 * t1) + (0);

30 bb2->bp[1].lb = 0;

31 bb2->bp[1].ub = +1*N-1;

32 add_to_list(&init_bb_list, bb2);

33
34 return init_bb_list;

35 }

Figure 4.3: Compiler generated function that returns initial bounding boxes for a tile

Chapter 4. BBMM - Bounding Box Based Memory Manager 34

GPU 1

Device list (global)

GPU 2

GPU 3

arr1 arr2 arr3 arrN

Inuse list (per array)

BB0

BB1

BB2

BB0

BB1

� dimension

� bounds in each dim

� usage count

� flags (read—write—cleanup)

� next

BB3 BB4 BB5

Unused list (one for all arrays)

Figure 4.4: Buffer management component of BBMM

flow path, resulting in no performance loss.

� In order to incur a performance loss due to warp divergence, an access function

should both be non-uniform (so that adjacent threads forming a warp access dif-

ferent memory regions) and split among multiple bounding boxes. For this loss

to be significant, a large number of access functions should have been split among

multiple bounding boxes. This happens very rarely in practice. Even when it does

happen, the performance loss will not be prohibitively significant.

In Section 4.9, we provide results that support the above reasoning.

4.4 Buffer management

In this section, we describe the techniques used in the buffer management component of

BBMM. This component is responsible for tracking the bounding boxes allocated on each

GPU, reduce duplicate allocations, maximize inter-tile data reuse and provide capability

to work with data sizes larger than the available GPU memory.

Chapter 4. BBMM - Bounding Box Based Memory Manager 35

4.4.1 Design overview

Figure 4.4 shows the design of the buffer management component. For each GPU, the

buffer manager maintains two lists of bounding boxes: (1) inuse list (2) and unused list.

The ones that are currently being read or written by a tile will be in inuse list. The

unused list is used to free up memory on a GPU whenever required and is maintained

in the least recently used (LRU) order. Each bounding box is associated with a usage

count, indicating the number of compute tiles currently using it. A bounding box will

be in unused list only if its usage count is zero. The usage count will be important in a

setting where multiple parallel tiles are running simultaneously on the same GPU and

these tiles are sharing the same bounding box. In such cases, the bounding box should

not be freed (say, to make space) until all the tiles are done using the bounding box. It

also has flags to indicate whether it will be only read, written, and what all needs to

be cleaned up. The memory manager provides various inexpensive runtime functions on

the bounding boxes. Table 4.2 lists the important ones.

Function name Description
bb alloc() Allocates a bounding box on a device, making space if needed

bb present() Checks if a given bounding box is already present on a device
bb readin() Initializes data into a bounding box, with intra-device transfers if possible

bb cleanup() De-allocate bounding boxes that are no longer required

Table 4.2: Functions provided by the buffer manager

4.4.2 Inter-tile data reuse

Using hyper-rectangles allows BBMM to find the subset and superset relation between

bounding boxes at runtime, with negligible overhead. It uses this functionality, to reuse

the data already present on a device and thereby minimize data transfers from CPU to

GPU. Data reuse happens at two levels. In the first level, BBMM checks if a bounding

box is already present or fully subsumed on the GPU before it allocates a new bounding

box. This check is performed by the bb present() function. This avoids redundant

allocations.

Chapter 4. BBMM - Bounding Box Based Memory Manager 36

Algorithm 3: bb readin()

Input: Device dev, Array a, Bounding box bbnewa

for each bounding box bbdeva on the device do1

bbintersecta = bb intersection(bbnewa , bbdeva)2

if bbintersecta is not empty then3

/* part of the data required for this bounding box is already present on the
device */

intra device copy(bbnewa , bbdeva , bbintersecta)4

bbnewa = bb subtract(bbnewa , bbintersecta)5

6

if bbnewa is not null then7

/* some portion of the bounding box is not yet read in. copy this data from
cpu */

cpu to gpu copy(bbnewa)8

The second level of reuse happens for partially subsumed bounding boxes. When

a new bounding box is allocated on a device, it has to be initialized with the latest

data. Instead of doing this entirely with the data from the CPU, BBMM reuses data

that is already present on a device through intra-device copies from one bounding box

to another. bb readin() (Algorithm 3) is used to perform this. The function uses the

bb intersection() to find the intersection of the new bounding box with the bounding

boxes already present on the GPU. The intersecting area is copied to the new bounding

box through an intra-device copy and the intersecting area is subtracted out from it.

Major GPU programming frameworks such as OpenCL and CUDA provide functions to

perform intra-device copies. For example, OpenCL provides clEnqueueCopyBuffer()

function that can perform this copy. The process is repeated for all bounding boxes

already present on the device. The leftover portion is initialized with the data from the

CPU.

Data reuse as a cost metric: In a dynamic computation placement scheme, the device

on which a tile is run is determined dynamically using a cost heuristic which chooses the

device that can minimize the overall costs of execution. Intra-device data reuse can be

used as one such metric. When there is an option to run a tile on any one of multiple

GPUs, running it on the GPU which maximizes intra-device data reuse would reduce

Chapter 4. BBMM - Bounding Box Based Memory Manager 37

the data movement overhead. BBMM enables such a scheme by providing functions

to compute the reuse factor for a given tile and a device using the technique described

above. However in this thesis we do not present results with such a dynamic scheme.

Cleaning up unwanted bounding boxes : If an initial bounding box is only parameter-

ized on outer serial loop iterations, then it can be freed immediately after those iterations

complete. During the initial bounding box extraction, the compiler checks whether this

is the case and sets the cleanup flag in the bounding box. Such bounding boxes are freed

by the memory manager at the end of the same outer serial loop iteration in which it

was allocated. The bb cleanup() function performs this task.

4.4.3 Freeing up space on a GPU – box-in and box-out

The function bb alloc() can free space on the GPU for allocating new bounding boxes,

if required. It does this by freeing up bounding boxes from the unused list in the LRU

order. LRU policy was chosen as it captures the temporal locality property of a program,

which will allow BBMM to work well with a compiler transformation that optimizes for

temporal reuse. If the bounding box about to be freed was earlier written on the GPU,

its data is copied onto the CPU before it is freed. When a future tile requires this

data, it is copied from the CPU back to the GPU. This in essence is like the page-in

and page-out process of the CPU, except that the granularity of memory is in terms of

bounding boxes. Hence, we call this box-in and box-out. This feature allows applications

to automatically work with data size much larger than the combined memory sizes of all

the GPUs. However, box-out and box-in operations are highly expensive since it involves

significant data transfers. Hence, for this feature to be of use, the tiles for which we are

freeing space need to have sufficient computations in them to compensate for the box-in

and box-out overhead over and above the time it takes for the tile to run on the CPU.

If this is not the case, it will be more efficient to run the tiles on the CPU itself. In our

experiments, embarrassingly parallel applications like blackscholes achieved excellent

scaling due to the fact that they had a very high compute-to-copy ratio. However,

applications which had an outer serial loop performed worse because a single parallel

Chapter 4. BBMM - Bounding Box Based Memory Manager 38

tile within each outer serial iteration did not have sufficient compute-to-copy ratio. The

results and detailed analysis for this feature are presented in Section 4.9.

4.4.4 Relationship between tiles, bounding boxes and multiple

GPUs

Tiles of a parallel loop can execute simultaneously on either the same GPU or different

GPUs. Data allocation function is run for each tile and bounding boxes are identified

at the granularity of an individual tile. In the case when multiple tiles are running on

the same GPU, BBMM performs an optimization to ensure that there is no redundant

allocation for fully-overlapping bounding boxes. If bounding boxes of different tiles only

partially overlap, then no such optimization is performed on them, and two copies of

the same array element can be present in two different bounding box on the same GPU.

In such a case the inter-GPU coherency scheme of BBMM ensures that multiple copies

the array elements within the same GPU is also in sync. This is possible because, in

BBMM, the coherency function is called at the granularity of a tile i.e, BBMM performs

inter-tile coherency.

4.5 Inter-GPU coherency

GPUs in a multi-GPU machine do not share address space. Hence, if tiles distributed

across different GPUs access same elements of an array, a copy of the element will be

present on multiple GPUs. Such a copy can also exist within the same GPU if two tiles

executing on the same GPU require the same array element and the bounding boxes of

those two tiles containing the array element do not fully overlap. Dependence analysis

during parallelism extraction stage ensures that in a parallel phase of execution i.e, within

the same outer serial loop execution, tiles do not have any data dependences. However,

across serial loop iterations, flow dependences (RAW dependences) can exist. In such

a case, a write to an array element by a tile will cause the other copies (if they exist)

of that element to become stale. Hence, explicit data transfers have to be performed

Chapter 4. BBMM - Bounding Box Based Memory Manager 39

to keep all the copies of the array element in sync before the next serial loop iteration

begins.

4.5.1 High-level overview of BBMM’s coherency scheme

BBMM uses a compiler assisted runtime coherency scheme. The compiler uses depen-

dence analysis to identify precise coherency data for each tile. This data is parametric

on the input tile iterators. This information is passed onto the runtime as part of the

compiler generated code. The runtime utilizes this information to obtain the exact co-

herency data by substituting the parametric tile iterators with the exact values since it

now has that information. The runtime now orchestrates the inter-GPU data movement

as follows. It first copies out the coherency data from the source GPU onto the CPU’s

copy of that array. It then checks if any other GPU has a bounding box containing that

element. If it finds such a bounding box, it immediately updates it with the copied out

value. This ensures that whenever a bounding box is present on a GPU, its necessary

elements (the elements read by at least one future tile) are always kept updated with

the latest data. If no such bounding box is found (which can happen if no tile reading

that data has yet been run) the updated values are retained on the CPU.

4.5.2 Details of BBMM’s coherency scheme

The data transfer to and from the GPU is expensive since it is via the PCIex bus which

has a limited bandwidth (8 GB/s). This data transfer needs to be efficient in order to

ensure that the overhead of coherency does not override the benefits of distributing the

computation onto multiple GPUs. Efficient data movement techniques for distributed

memory setups is an orthogonal problem to ours and many current and past works

have tried to address it [1, 2, 7, 9, 10, 12, 22]. In this thesis, we use the state-of-the-

art data movement scheme for distributed-memory scenarios proposed by Dathathri et

al [12]. This scheme called Flow-Out Partitioning (FOP) first identifies the data to be

transferred from a source tile called the flow-out set. The flow-out set is further refined

Chapter 4. BBMM - Bounding Box Based Memory Manager 40

using a technique called source-distinct partitioning in which data transfers due

to multiple dependences are grouped together such that all the elements from a partition

are required by all the receivers of that partition. This eliminates both unnecessary

and duplicate data transfers inherent in other data movement schemes. The scheme

has been demonstrated to work efficiently with both distributed memory clusters and

heterogeneous systems. The complete details of this scheme are beyond the scope of this

thesis and the reader is referred to [12] for the same. We describe the adaptation of this

scheme and how we extend the idea of bounding boxes for inter-tile data transfers.

Rectangular transfers and flow-out bounding boxes

Since rectangular transfers (both contiguous and non-contiguous) are efficiently sup-

ported on the GPUs 4.1, we approximate the flow-out sets into flow-out bounding boxes.

We then copy a flow-out bounding box onto the CPU with a single rectangular read. On

the CPU, the precise flow-out elements are unpacked from the rectangular buffer onto

the CPU’s copy of the array. The fact that BBMM natively works with rectangles and

its ability to identify subsumed bounding boxes enables it to utilize the rectangular data

transfer efficiently thereby minimizing its overhead.

Generation of flow-out bounding boxes at compile time

The compile-time component of BBMM extracts the flow-out sets as flow-out bounding

boxes. These bounding boxes are parameterized on the input tile and array. A function

similar to the one shown in Figure 4.3 is generated.

Data movement orchestration at runtime

The BBMM runtime library contains the data movement orchestration component. At

runtime, three distinct data transfers are performed. Table 4.3 lists the functions that

perform these data transfers.

gpu to cpu flowout(): This function copies the partitioned flow-out sets out of the

bounding box of the source tile onto a copy of the array maintained by the host CPU.

Chapter 4. BBMM - Bounding Box Based Memory Manager 41

Function Name Description
gpu to cpu flowout() The data items that are written by a tile and read by other tiles

due to RAW (flow) dependences are copied out from the source
GPU into the CPU.

cpu to gpu flowin() The updated data is copied from the CPU onto the bounding
boxes of the target tiles

gpu to cpu writeout() The data items that are written last by this tile and will be part
of the final output are copied from the source GPU onto the CPU

Table 4.3: Functions provided by the data movement component

The CPU always has the latest copy of the flow-out sets. This ensures that a future

tile depending on this flow-out set can be provided the required data from the CPU

itself. When the exact flow-out sets are non-rectangular this function copies the entire

bounding box onto the CPU and then unpacks the precise elements on the CPU’s copy

of the array.

cpu to gpu flowin(): The flow-out data copied out to the CPU, now needs to be

copied into any overlapping bounding boxes on other GPUs. To do this, we perform

an intersection of the flow-out bounding boxes with the bounding boxes allocated on

other GPUs. For each intersecting portion, a CPU to GPU data transfer is performed,

thereby updating the destination bounding boxes to the latest state. In cases where

the exact flow-in sets are non-rectangular, correctness is ensured by first copying the

flow-in set into a temporary staging buffer on the GPU, and using a flow-in bitmask

which indicates the elements within the staging buffer that has to be copied onto the

destination bounding boxes.

4.6 Host and kernel code generation

In this section, we describe how all the components of BBMM come together as part of

the generated host and kernel code.

Chapter 4. BBMM - Bounding Box Based Memory Manager 42

4.6.1 Structure of the generated host code

The overall structure of the host code that drives the GPU kernel execution on a multi-

GPU machine is shown in Algorithm 4. The execution begins from the outer serial

loops. For each iteration of this loop, the set of parallel tiles are distributed among the

available GPUs. This can be a one-dimensional or multi-dimensional block or block-cyclic

distribution. The code following the distribution of tiles, is executed in the context of a

worker thread which manages a particular GPU. For each tile distributed to that GPU

the worker thread runs the code shown between lines 3 and 18. For each array accessed

in the tile, the set of bounding boxes to be allocated is obtained using Algorithm 2.

Each bounding box is checked for presence on the GPU using bb present(). If it is not

found, the bounding box is allocated on the GPU with bb alloc() and initialized with

bb readin(). Once the bounding boxes are ready, their usage counts are incremented so

that the box-in box-out logic does not remove them to free space if need be. The tile is

then scheduled for computation on the GPU. Once the computations complete, the inter-

tile data transfers are performed using the functions described in Table 4.3. Following

this, the usage count of the bounding boxes are decremented and any bounding box

which has a usage count of zero is moved to the unused list to be either reused or freed

up for next iteration. At the end of the outer serial loop iteration, the bounding boxes

Chapter 4. BBMM - Bounding Box Based Memory Manager 43

that are marked for cleanup using bb cleanup().

Algorithm 4: Structure of the generated host code

for each iteration of the outer serial loop is do1

distribute the parallel tiles of is among the GPUs2

/* below code is executed in the context of a host worker thread that manages the GPU */

for each parallel tile ~t of is allocated to GPU dev do3

S = φ4

for each array a accessed in ~t do5

Sa = get disjoint bounding boxes(~t,a)6

for each bounding box bb in Sa do7

if !bb present(dev, a, bb) then8

bb alloc(dev, a, bb)9

bb readin(dev, a, bb)10

increment usage count(bb)11

S = S ∪ Sa12

compute(~t, dev, S)13

gpu to cpu flowout(~t, S)14

cpu to gpu flowin(~t, S)15

gpu to cpu writeout(~t, S)16

for each bounding box bb in S do17

decrement usage count(bb)18

bb cleanup(dev, is)19

4.6.2 Structure of the parameterized GPU kernel

GPU kernel generation is an orthogonal problem to ours and works such as [5, 29, 41]

have focused on automatically generating optimized GPU kernels from sequential CPU

codes. In BBMM, kernel generation is not a core problem we address. Rather, we

just parameterize the GPU kernels to accept bounding boxes. The access functions are

outlined so that they access data from the input bounding boxes. Figure 4.5 shows the

general structure of the parameterized GPU kernel. At compile time, each kernel is

generated with a list of bounding boxes as parameters. At runtime, these parameters

Chapter 4. BBMM - Bounding Box Based Memory Manager 44

1 void ComputeKernel0(int split0, DATA_TYPE * buf0, int buf0_lb0, int buf0_ub0, int

buf0_lb1, int buf0_ub1, int split1, DATA_TYPE * buf1, int buf1_lb0, int buf1_ub0,

int buf1_lb1, int buf1_ub1,)

2 {

3 DATA_TYPE * var_wacc_0 = KERNEL0_var_WACC(split0, buf0, buf0_lb0, buf0_ub0,

buf0_lb1, buf0_ub1, idx0, idx1);

4 DATA_TYPE var_racc_0 = KERNEL0_var_RACC(split1, buf1, buf1_lb0, buf1_ub0,

buf1_lb1, buf1_ub1, idx0, idx1);

5 ...

6 // do the computation using values obtained above.

7 *var_wacc_0 = var_racc_0 + ...

8 }

Figure 4.5: General structure of the parameterized GPU kernel

are set to appropriate disjoint bounding box buffers using clSetKernelArgs() function.

Each access function in the kernel is passed with information of whether its bounding

box is split. Each access function in the kernel is outlined with a wrapping macro that

checks if the bounding box corresponding to it is split. If it is not split (i.e., splitX

= 0, which is the majority case) the macro dereferences the buffer pointer associated

with the bounding box using the indices that are subtracted by offsets of that bounding

box. If the access function is split, then the macro checks each bounding box bounds

to determine which bounding box the index being accessed belongs to; that buffer is

dereferenced with the appropriate indices.

4.7 Implementation

BBMM’s implementation has a compiler component and a runtime component. The

compile-time component is integrated with the polyhedral source to source compiler

Pluto [8]. The input to Pluto is a serial C code containing arbitrarily nested affine loop

nests. Pluto creates a polyhedral representation of the program and identifies the serial

and parallel loops in it. It also extracts array access and dependence information from

the input code. The parallelized code is tiled with user provided tile sizes. Choosing

appropriate tiles sizes automatically is an orthogonal problem. Doing this, in part,

requires parametric tiling, which is an ongoing research in the polyhedral area [39].

Chapter 4. BBMM - Bounding Box Based Memory Manager 45

Hence, BBMM currently requires the user to provide the tile sizes at compile time and

to ensure that the size of data required by a single tile is less than the global memory size

of the GPU on which the tile executes. BBMM’s compile-time component uses this tiled

and parallelized code as input and generates the following code. The functions to return

the set of initial bounding boxes and flow-out bounding boxes as shown in Figure 4.3,

a function to implement the data allocation scheme shown in Algorithm 4, and the

parameterized OpenCL kernel. The runtime component of BBMM is implemented as

a standalone C library that can be linked with any C/C++ application. The library

implements the algorithms and functions described in earlier sections. The library is

generic and does not contain any references to platform specific code such as CUDA or

OpenCL. Hence, it can be used with either of them. For the results in this thesis, we

made the following choices of tile distribution and scheduling:

� a static one-dimensional block distribution of parallel tiles among GPUs is used,

� at any time, only one tile is active on a given GPU, and multiple parallel tiles

distributed to the same GPU are executed sequentially in lexicographical order,

� tiles across different (independent) parallel loop nests are executed sequentially in

program order across different kernel calls.

The reason for placing these restrictions is to focus our experimentation on the efficiency

and effectiveness of the core parameters of BBMM such as allocation sizes, reuse ex-

ploitation, inter-gpu coherency, box-in/box-out, and runtime overheads of the library

and generated kernel. However, we note that BBMM’s techniques can be made to work

with any choice of tile distribution and scheduling schemes, whether static or dynamic.

4.8 Experimental setup and benchmarks

The experiments were run on an Intel Xeon multicore server consisting of 12 Xeon E5645

cores (2-way SMP of hex-core) running at 2.4 GHz. The server includes 3 NVIDIA Tesla

C2050 and 1 NVIDIA Tesla K20 graphics processors connected on the PCI-express bus.

Chapter 4. BBMM - Bounding Box Based Memory Manager 46

Program Source Dep pattern A B
Data size on 1 GPU (1X)

C D E
Array sizes Size (GB)

floyd Polybench non-uniform 1 2 16384 x 16384 2.0 2 yes 0.05%
heat2d Pochoir uniform 2 2 12288 x 12288 2.25 4 yes 0.10%
fdtd2d Polybench uniform 3 2 10240 x 10240 2.4 2 yes 0.06%
heat3d Pochoir uniform 2 3 512x512x512 2.0 4 yes 0.04%
lu Polybench non-uniform 1 2 16384 x 16384 2.0 3 yes 0.07%
adi Polybench uniform 3 2 8192 x 8192 1.5 2 yes 0.01%
mvt Polybench EP 3 2 20480 x 10240 1.5 1 no 0.01%
bscholes NVIDIA EP 3 1 67,108,864 1.5 1 no 0.01%

Table 4.4: Programs used for evaluation A: number of arrays. B: maximum dimensional-
ity of arrays C: maximum number of bounding boxes for any array D: subsumed bounding
boxes present? E: BBMM runtime overhead as a percentage of overall execution time

The Tesla C2050 have 2.5 GB of global memory each and the K20 has 5 GB of global

memory. For our experiments we chose to limit the memory usage of K20 to 2.5 GB to

maintain uniformity. We thus have a combined GPU memory size of 10 GB. NVIDIA

driver version 304.64 supporting OpenCL 1.1 was used as the OpenCL runtime.

The programs for evaluating BBMM was drawn from a variety of benchmarks such

as Polybench [32], Pochoir [38], and the NVIDIA GPU SDK [25]. The main criteria

for selection of test programs was for them to have affine loop bounds and affine access

functions. To test all the features of BBMM, we chose benchmarks that have different

dependence patterns (uniform, non-uniform, embarrassingly parallel (EP)), and different

array dimensionalities. The selected programs are listed in Table 4.4.

4.9 Evaluation parameters and results

In this section, we describe the parameters on which we evaluate BBMM, the insights

we hope to gain from each of them, and the experimental results and analysis for the

same.

4.9.1 Overhead of the runtime library

This is an important parameter that measures the execution overhead of BBMM run-

time library functions, giving an insight into the cost of the various bounding box set

Chapter 4. BBMM - Bounding Box Based Memory Manager 47

operations and the memory management functions listed in Tables 4.1 and 4.2. To com-

pute this, the time taken for memory management is first obtained by measuring the

time spent inside the library, throughout a program’s execution. The overhead is then

computed as a percentage of the overall execution time of the program. Specifically:

total time=memory mgmt time+compute time+flowout time+flowin time+writeout time

overhead percentage = (memory mgmt time / total time) * 100

Table 4.4 (column F) shows the overhead percentage. For all programs, this does not

exceed 0.1% of the total execution time and is thus insignificant.

4.9.2 Performance of programs with data scaling

Data scaling refers to the scenario when dataset sizes of a program are increased at the

same rate as the combined memory size of the processing elements (GPUs in this case),

i.e., the data size per GPU remains constant. This parameter is similar to weak scaling,

but the emphasis is on memory utilization rather than on workload. Hence, for this

parameter, we report the speedup per outer sequential loop iteration. The per-iteration

speedup of a program is computed by dividing the per-iteration execution time with

2X, 3X and 4X data sizes with the per-iteration execution time with 1X data size. The

value of X for each program is specified in Table 4.4. This cancels out the effect of

the algorithmic complexity of the program on speedup calculations. The per-iteration

execution time considered for this calculation includes all overheads, i.e., data allocation

time, computation time on the GPUs, flow-out time, flow-in time and write-out time.

BBMM’s schemes directly affect all, except the pure computation time on the GPUs.

Figure 4.6 shows the data scaling results on 2, 3 and 4 GPUs. For every additional

GPU added to the experiment, the data size is increased proportionally so that the data

size per GPU is constant. For all programs except adi, we see that the speedup is around

1 with a geometric mean speedup of 0.94, indicating near ideal data scaling. However,

for adi, we see a significant slowdown with the increase in the number of GPUs. This is

because, adi has an enormous amount of inter-device data movement at the end of each

Chapter 4. BBMM - Bounding Box Based Memory Manager 48

 0

 0.5

 1

 1.5

 2

 2.5

 3

floyd heat2d fdtd2d heat3d lu adi mvt bscholes mean

P
er

−
it

er
at

io
n

 s
p
ee

d
u
p

Benchmarks

2 GPUs − 2X data size
3 GPUs − 3X data size
4 GPUs − 4X data size

Figure 4.6: Performance with data-scaling

serial iteration to maintain coherency among the GPUs. This causes the compute-to-

copy ratio to be very small for this program, resulting in poor scaling. This high volume

of data movement is due to the dependence patterns in the program and independent of

our memory management schemes.

4.9.3 Comparison of data allocation sizes

We compare the data allocation sizes of BBMM with that of a convex bounding box

approach and the theoretical exact sizes required. The convex bounding box for a tile is

obtained by performing the convex union of the initial bounding boxes. The exact sizes

required are manually calculated. The sizes are reported as a percentage of the array

size. Comparing with the convex approach gives an insight into the maximum reduction

in data allocation sizes due to the use of disjoint operation. Comparing with the exact

sizes, tells us how good BBMM’s allocation sizes are compared to any possible manual

effort.

Figure 4.7 shows the reduction in data allocation sizes as result of using disjoint

bounding boxes. For floyd and lu, which have non-uniform data access pattern, using

disjoint bounding boxes greatly reduces the allocation sizes – up to 75% on our 4 GPU

Chapter 4. BBMM - Bounding Box Based Memory Manager 49

 0%

 20%

 40%

 60%

 80%

 100%

floyd heat2d/3d,fdtd2d adi lu

M
ax

im
u
m

 a
ll

o
ca

ti
o
n

 s
iz

es
 o

n
 e

ac
h
 G

P
U

Benchmarks

Exact data size required
Size of convex bounding box
Size of disjoint bounding boxes

Figure 4.7: Allocation size comparison between exact, convex and disjoint bounding box
schemes

machine as compared to convex bounding boxes. However, for the class of programs such

as stencils and linesweep (heat2d, heat3d, fdtd2d, adi) that have uniform accesses, the

difference in sizes are negligible. Also, for all the programs, the allocation sizes due to

disjoint bounding boxes equals the exact required data sizes (computed manually). This

shows that BBMM’s automatically generated data sizes for these programs are as good

as any possible manual programming effort.

4.9.4 Benefits of inter-tile data reuse

This gives an insight into the extent of the benefit gained by exploiting data reuse across

different tiles of a program. We report the speedup of programs when this optimization

is enabled, over the same programs with this optimization disabled.

Figure 4.8 shows the speedup obtained with inter-tile data reuse enabled. The base-

line is the execution time of the programs without enabling this optimization. Exploiting

inter-tile data reuse yielded a mean speedup of 5.4 over without-reuse case. heat2d,

heat3d, lu, and fdtd2d have tiles whose bounding boxes are already fully subsumed

Chapter 4. BBMM - Bounding Box Based Memory Manager 50

 0

 10

 20

 30

 40

 50

 60

 70

 80

floyd heat2d heat3d fdtd2d lu adi mvt bscholes mean

S
p

ee
d

u
p

 o
v

er
 w

it
h
o

u
t−

re
u
se

Benchmarks

1.0 1.0 1.0 1.04.2 5.4

2 GPUs with reuse
3 GPUs with reuse
4 GPUs with reuse

Figure 4.8: Speedup with inter-tile reuse as compared to without-reuse

inside bounding boxes of other tiles. When inter-tile data reuse is disabled, these sub-

sumed bounding boxes are also allocated separately. The flow-out sets have to be now

copied to these as well which results in significant amount of data movement overhead.

blackscholes and adi do not have subsumed bounding boxes and floyd has very small

flow-out sets. Hence, they are not affected by this optimization.

4.9.5 Effect of access function split

This measures the effect of access function split (hence, possible warp divergence) on

the execution times of the programs. Among our test programs, the stencils (heat2d,

heat3d, fdtd2d) and linesweep(adi) which have uniform dependences undergo a split for

some of their access functions. For programs with non-uniform accesses such as floyd

access functions do not split. Hence, in order to investigate the effect of warp divergence,

we modified our scheme as follows:

� For stencils/linesweep, we forced our algorithm to return convex bounding boxes

so that all the access functions now access from a single convex bounding box and

hence they do not split.

� For floyd, we forced BBMM to always treat all its access functions as split (which

Chapter 4. BBMM - Bounding Box Based Memory Manager 51

 0

 0.5

 1

 1.5

 2

 2.5

heat2d heat3d fdtd2d floyd(forced−split)

S
p

ee
d
u

p
 o

v
er

 w
it

h
o

u
t−

sp
li

t

Benchmarks

1 GPU − 1X data size
2 GPUs − 2X data size
3 GPUs − 3X data size
4 GPUs − 4X data size
1CPU − 4X data size

Figure 4.9: Performance with access function splits as compared to without-split

is the worst possible case that can happen). Hence in this case, there is a conditional

check for every array access. This gives an insight into the worst case performance

of the generated kernel.

Figure 4.9 shows the performance when access functions are split across multiple

bounding boxes. The baseline is the execution time of the same program without any

access function split. As explained in Section 4.3.4, we see that stencils do not have

any performance degradation even when the bounding boxes are split. However, for

floyd we see a 40% degradation in performance. Even though this is a significant

degradation, we have to note that this is for the (forced) worst case scenario of every

access function getting split, which rarely happens in practice. Also, even with a 40%

percent degradation, we note that the performance on a GPU is much better than a tiled

and parallelized version of floyd running on the 12-core system.

4.9.6 Benefit of box-in and box-out

As explained in section 4.4.3, for this feature to be beneficial, one has to ensure that the

tiles to be run on GPUs have sufficient computation to compensate for the data movement

overheads. If not, there could be performance degradation. Hence, we selected matmul

Chapter 4. BBMM - Bounding Box Based Memory Manager 52

 0

 2

 4

 6

 8

 10

 12

blackscholes matmul floyd

S
p
ee

d
u

p
 o

v
er

 a
 1

2
−

co
re

 s
y

st
em

Benchmarks

1 GPU memory size (X) = 2.5 GB

1 GPU 6GB data size (>2X)
2 GPUs 12 GB data size (>4X)
4 GPUs 24GB data size (>8X)

Figure 4.10: Speedup with box-in and box-out over a 12-core system

and blackscholes that have this property (high compute-to-copy ratio) to demonstrate

the benefits of box-in/box-out and floyd to demonstrate the performance degradation.

Also, we compare the GPU performance with that of a multi-core CPU, since we are

interested in understanding the maximum data sizes up to which using GPUs (rather

than the CPU itself) would be beneficial.

Figure 4.10 shows the speedup of programs with box-in and box-out over running

on 12-core system. The CPU version of the code was automatically tiled and OpenMP-

parallelized using Pluto. For blackscholes and matmul which are embarrassingly par-

allel, we noticed significant speedup compared to their CPU versions. However, for

programs like floyd which have outer serial loop, there was a slowdown in the GPU

performance. One way to increase the compute-to-copy ratio for floyd, is to tile the

outer serial loop (or the time dimension in case of stencils). In this thesis, we do not

present results with such a tiling.

4.9.7 Comparison with manual code

We provide a comparison of BBMM’s automatically generated memory management

code with manually written OpenCL [27], OpenACC [26] codes. This gives insights into

Chapter 4. BBMM - Bounding Box Based Memory Manager 53

the efficiency of the code generated by BBMM in terms of allocation sizes and coherency

costs, as compared to fully hand-optimized codes. We also evaluate BBMM’s box-in/box-

out feature when compared with manually written code picked from StarPU [3] suite on

a single GPU. This can yield useful insights about the maximum data sizes a program

can work with.

Comparison with manually written OpenCL codes

For this comparison, we chose floyd as a representative example of non-uniform access

pattern, heat2d for its uniform access pattern and inter-tile data reuse potential, and

blackscholes for its embarrassingly parallel structure. floyd and heat2d require co-

herency at the end of each outer serial loop iteration. These three programs together

cover all the characteristics present in the other programs of our test suite. The codes

were written with the following optimizations:

� The computations were manually distributed equally among the GPUs.

� The data allocation sizes for each tile of computation was the theoretical minimum.

� The volume of data moved for coherency was theoretical minimum.

� Reuse exploitation was theoretical maximum i.e., no data which was already on

the GPU was re-allocated or re-initialized.

Figure 4.11 shows the relative execution time of BBMM as compared to manually

written OpenCL code on 2 and 4 GPUs. In each case, the code generated by BBMM

performed almost as efficiently (minimum being 88%) as the manually optimized code.

In each case, the size of data allocated by BBMM is equal to the size of manually

allocated data. In other words, the allocation sizes are exact. In case of floyd and

heat2d the volume of data moved by BBMM due to coherency is also equal to that of

manually written code. The slight slowdown in BBMM’s code can be attributed to two

factors: (1) overhead of BBMM’s memory management data structures, (2) additional

memory accesses present in the generated kernel. However, considering the significant

Chapter 4. BBMM - Bounding Box Based Memory Manager 54

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

floyd heat2d bscholes

S
p
ee

d
u

p
 o

v
er

 m
an

u
al

 O
p
en

C
L

 c
o

d
e

Benchmarks

2 GPUs − 2X data size
4 GPUs − 4X data size

Figure 4.11: Performance normalized to manually written multi-GPU OpenCL code

programming efforts involved in writing the manual code, this slight slowdown can be

considered acceptable.

Comparison with manually written OpenACC codes

OpenACC [26] does not have support for automatic array distribution and coherency.

Hence, in our manual OpenACC codes, we performed the array distribution manually

and allocated the needed sub-arrays on the GPUs using cudaMalloc(). We then used

the deviceptr clause to pass these data pointers to the OpenACC kernel. The coherency

management was done manually using cudaMemcpy(). PGI [30] compiler version 12.10,

supporting OpenACC 1.0 specification, was used to compile the codes. As in the case of

OpenCL, the allocation sizes and coherency volume was kept to theoretical minimum.

Again, we chose floyd, heat2d and blackscholes as representative programs for non-

uniform, uniform and embarrassingly parallel applications.

Figure 4.12 shows the comparison of the execution times of BBMM and OpenACC

on 2 and 4 GPUs. For floyd and heat2d, BBMM has a speedup of 1.6× and 1.3×

respectively, over manual OpenACC code in spite of having the same volume of data

allocation and coherency. This can be attributed to the OpenACC kernel execution

Chapter 4. BBMM - Bounding Box Based Memory Manager 55

 0

 0.5

 1

 1.5

 2

 2.5

 3

floyd heat2d bscholes

S
p

ee
d

u
p
 o

v
er

 m
an

u
al

 O
p
en

A
C

C
 c

o
d
e

Benchmarks

26.7 26.6

2 GPUs − 2X data size
4 GPUs − 4X data size

Figure 4.12: Performance normalized to manually written multi-GPU OpenACC code

 0

 2

 4

 6

 8

 10

0.8GB 1.6GB 3.2GB 6.4GB 12.8GB

T
o
ta

l
e
x

e
c
u
ti

o
n
 t

im
e
 (

se
c
o

n
d

s)

Data size

StarPU 1.0.5
BBMM

Figure 4.13: Comparison with StarPU for mvt on 1 GPU

Chapter 4. BBMM - Bounding Box Based Memory Manager 56

overheads. This overhead is even more significant in blackscholes where BBMM has a

speedup of over 26× over OpenACC. In this case, OpenACC selected inefficient grid and

block sizes. We suspect that the significant slowdown in its performance is due to this.

In spite of our best efforts to manually correct this with num gangs and num workers

clauses, the OpenACC compiler ignored our directives and continued to use its internally

computed values.

Comparison with manually written StarPU code

Figure 4.13 provides a comparison of automatic data allocation with BBMM with a

manually written code for mvt taken from the StarPU framework. The manual version

of the code was taken as-is from the StarPU 1.0.5 example suite. We see that, until the

data size was within the GPU memory size, the performance of BBMM’s automatically

generated code was on par with the manually version of the code. Beyond that data

size, StarPU could not allocate data whereas with BBMM, box-out and box-in kicked in

causing data to be automatically freed up on the GPU to make space for new bounding

boxes. This resulted in an ideal scaling up to the tested data size of 12.8 GB (> 5× the

single GPU memory).

Chapter 5

Data movement scheme: Details and

further optimizations

In this chapter, we provide more details of the efficient inter-GPU data movement tech-

niques used in BBMM. We first provide an overview of the techniques themselves and

then provide the detailed experimental evaluation and results. We then describe a novel

technique that we have developed to maximize compute-copy overlap which further re-

duces the data movement overhead, and enables applications to achieve ideal strong

scaling.

5.1 Brief description of the schemes

In this section, we describe the working of two state-of-the-art automatic data movement

schemes for distributed-memory systems which form the basis for the scheme used in

BBMM – the Flow-Out scheme (FO) and further improvement on it called the Flow-Out

Partitioning scheme (FOP).

5.1.1 The Flow-Out (FO) scheme

The flow-out scheme was proposed by Bondhugula [7] as an efficient and automatic

technique for generating data-movement code for distributed memory scenarios. In this

57

Chapter 5. Data movement scheme: Details and further optimizations 58

scheme, the data that needs to be moved out of a source tile due to RAW dependences -

called the flow-out set, is computed using advanced polyhedral techniques. The flow-

out set is parameterized on the source tile and is computed for a given array and for

all dependences arising due to the read and write accesses to that array. The scheme

also automatically identifies the list of receiver tiles to whom the flow-out set needs to

be sent. At runtime, the scheme can work with any tile distribution function that maps

the tiles onto the actual compute devices. The drawback of this scheme arises from the

fact that, the entire flow-out set is sent to all receiver devices, even though each receiver

does not need to receive all the elements in the flow-out set.

5.1.2 The Flow-Out Partitioning (FOP) scheme

The drawback of FO scheme was overcome by our work in Dathathri et al [12]. This

scheme called Flow-Out Partitioning (FOP), partitions the flow-out set such that all

the elements from a partition are required by all the receivers of that partition. The

partitioning of the flow-out set is achieved by using a technique called source-distinct

partitioning of the RAW dependences, which is described below.

source-distinct partitioning: A source-distinct partitioning of dependences par-

titions the dependences such that the region of data flowing due to all the dependences

in a partition is the same and the region of data flowing through two different partitions

are disjoint.

In order to partition dependences, it is necessary to determine whether the regions of

data that flow due to two dependences overlap, i.e., whether the region of data written

by the source iterations of one dependence overlaps with that of the other. This can be

determined by an explicit dependence test between the source iterations of one depen-

dence and the source iterations of another dependence. Such a dependence might not

be semantically valid (e.g., when there is overlap in the regions of data that flow due to

dependences with the same source statement). It is just a virtual dependence between

two dependences, that captures the overlap in the regions of data that flow due to those

dependences.

Chapter 5. Data movement scheme: Details and further optimizations 59

If a virtual dependence exists between two dependences, the iterations of the original

dependence that share the source iterations with the virtual dependences are subtracted

out from the original dependences. The virtual dependences, along with the remainder

of the original dependences are now source-distinct. The process is repeated until no new

partitions can be formed. The data flowing due to each of the source-distinct partitions

are now sent to receivers that require at least one receiver in the partition. Since the

flow-out partitions are disjoint and each of them combines the data to be communicated

due to multiple dependences, this scheme reduces duplication.

5.2 Experimental Evaluation

We evaluated FO and FOP schemes independently on two major GPU vendor platforms

- NVIDIA and AMD. Below we present the setup, benchmarks and results for both of

these.

5.2.1 Experimental setup

Intel-NVIDIA system: The Intel-NVIDIA system consists of an Intel Xeon multicore

server consisting of 12 Xeon E5645 cores running at 2.4 GHz. The server has 4 NVIDIA

Tesla C2050 graphics processors connected on the PCI express bus, each having 2.5 GB

of global memory. NVIDIA driver version 304.64 supporting OpenCL 1.1 was used

as the OpenCL runtime. Double-precision floating-point operations were used in all

benchmarks. The host codes were compiled with gcc version 4.4 with -O3.

AMD system: The AMD system consists of a AMD A8-3850 Fusion APU, consist-

ing of 4 CPU cores running at 2.9 GHz and an integrated GPU based on the AMD Radeon

HD 6550D architecture. The system has two ATI FirePro V4800 discrete graphics pro-

cessors connected on the PCI express bus, each having 512 MB of global memory. Since

these GPUs do not support double-precision floating-point operations, we use single-

precision floating-point operations in all benchmarks. The data sizes are chosen such

that the entire array data fits within each GPU’s global memory. AMD driver version

Chapter 5. Data movement scheme: Details and further optimizations 60

9.82 supporting OpenCL 1.2 was used as the OpenCL runtime. The host codes were

compiled with g++ version 4.6.1 with -O3.

5.2.2 Benchmarks

We evaluate FO and FOP for floyd, lu, fdtd-2d, heat-2d and heat-3d benchmarks.

These benchmarks are taken from the same source as listed in Table 4.4. Since the focus

is on data movement, we have not considered the programs that are embarrassingly

parallel.

5.2.3 Evaluation

We consider the following combination of compute devices: (i) 1 CPU, (ii) 1 GPU, (iii)

2 GPUs, (iv) 4 GPUs. We evaluate FO and FOP on the Intel-NVIDIA system for all

these cases. On the AMD system, we evaluate FO and FOP for (i), (ii) and (iv) cases,

using only the discrete GPUs. In the first two cases, the devices run the entire OpenCL

kernel. For cases (iii) and (iv), kernel execution is partitioned across devices and equally

distributed (block-wise).

5.2.4 Results

Table 5.1 shows results obtained on the Intel-NVIDIA system. For all benchmarks, the

running time on 1 GPU is much lower than that on the 12-core CPU. This running

time is further improved by distributing the computation onto 2 and 4 GPUs. For all

benchmarks, we see that FOP significantly reduces communication volume over FO. The

computation tile sizes directly affects the communication volume (e.g., 32× for floyd).

For the transformations and placement chosen for these benchmarks, we manually verified

that FOP achieved the minimum communication volume. This reduction in communi-

cation volume results in a corresponding reduction in execution time facilitating strong

scaling of these benchmarks, as shown in Figure 5.1 – this was not possible with the

existing FO. For example, FO for heat-3d has very high communication overhead and

Chapter 5. Data movement scheme: Details and further optimizations 61

does not scale beyond two GPUs. For floyd and lu, FO scales up to 2 GPUs, but not

beyond it. However, FOP easily scales up to 4 GPUs for all benchmarks. The extent of

scalability for lu is not as much as the other programs. This is due to the fact that lu

has a low compute-to-copy ratio. In other words the cost of inter-GPU data movement

significantly offsets the gains of computation partitioning. This is because, lu has non-

uniform dependences, due to which its flowout data has to be copied out to each of the

other GPUs in the system, leading to significant data movement overhead. This prop-

erty of lu is more visible in the FO scheme where the cost of datamovement completely

overrides the cost of computation partitioning resulting in significant slowdown rather

than speedup.

Table 5.2 shows results obtained on the AMD system. The OpenCL functions used to

transfer rectangular regions of memory are crucial for copying non-contiguous (strided)

data efficiently. We found these functions to have a prohibitively high overhead on this

system. This compelled us to use only those functions which could copy contiguous

regions of memory. Hence, we present results only for floyd, heat-2d and fdtd-2d

since the data to be moved for these benchmarks is contiguous. For all benchmarks,

the running time on 1 GPU is much lower than that on the 4-core CPU. FO does not

perform well on 2 GPUs for heat-2d and fdtd-2d since these benchmarks have a low

compute-to-copy ratio and the high volume of communication in FO leads to a slowdown.

The FOP scheme, on the other hand, performs very well on 2 GPUs, yielding a

near-ideal speedup of 1.8× over 1 GPU for all benchmarks.

5.3 Further optimizations: Maximizing compute-copy

overlap

In this section, we describe further optimization to the data movement technique de-

scribed in previous section and demonstrate its benefits.

Chapter 5. Data movement scheme: Details and further optimizations 62

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1GPU 2GPUs 4GPUs

S
p
e
e

d
u
p

Device combination

floyd
fdtd-2d
heat-3d
lu
heat-2d

Figure 5.1: FOP – strong scaling on the Intel-NVIDIA system

Bench
mark

Problem
sizes

Tile
sizes

Dev Total execution time Total communication vol-
ume(in GB)

Comb - FOP FO Speed
up

FOP FO Reduction
factor

floyd
10240 x
10240

32 x
32

1 CPU 890s – – – – – –
1 GPU 113s – – – – – –
2 GPUs – 65s 104s 1.60 1.6 51.0 32
4 GPUs – 43s 107s 2.49 3.1 102.0 32

lu
11264 x
11264

256 x
256

1 CPU 412s – – – – – –
1 GPU 77s – – – – – –
2 GPUs – 64s 147s 2.30 0.7 62.0 83
4 GPUs – 60s 208s 3.47 1.2 63.0 51

fdtd-2d
4096 x
10240 x
10240

32 x
32

1 CPU 1915s – – – – – –
1 GPU 397s – – – – – –
2 GPUs – 207s 236s 1.14 0.9 22.0 22
4 GPUs – 117s 164s 1.40 2.2 62.0 28

heat-2d
4096 x
10240 x
10240

32 x
32

1 CPU 1112s – – – – – –
1 GPU 266s – – – – – –
2 GPUs – 138s 157s 1.14 0.6 21.0 32
4 GPUs – 80s 124s 1.55 1.9 62.0 32

heat-3d
4096 x
512 x 512
x 512

32 x
32 x
32

1 CPU 3080s – – – – – –
1 GPU 1932s – – – – – –
2 GPUs – 1086s 1379s 1.26 16.0 512.0 32
4 GPUs – 670s 1658s 2.47 49.0 1535.4 32

Table 5.1: Results on the Intel-NVIDIA system

Chapter 5. Data movement scheme: Details and further optimizations 63

Bench
mark

Problem
sizes

Tile
sizes

Dev Total execution time Total communication vol-
ume(in GB)

Comb - FOP FO Speed
up

FOP FO Reduction
factor

floyd
10240 x
10240

32 x
32

1 CPU 1084s – – – – – –
1 GPU 512s – – – – – –
2 GPUs – 286s 305s 1.07 0.8 25.0 32

fdtd-2d
4096 x
5120 x
5120

32 x
32

1 CPU 1529s – – – – – –
1 GPU 241s – – – – – –
2 GPUs – 133s 242s 1.82 0.2 2.15 17

heat-2d
4096 x
8192 x
8192

32 x
32

1 CPU 3654s – – – – – –
1 GPU 256s – – – – – –
2 GPUs – 142s 353s 2.49 0.25 8.0 32

Table 5.2: Results on the AMD system

5.3.1 Compute-copy overlap

GPUs used in HPC have a DMA engine that can perform data transfers independent

of the computations going on in the GPU. This allows the programmer to overlap data

movement associated with a program with a non-conflicting computation. Overlapping

data movement with kernel execution helps in hiding the data movement overhead. Many

works in the literature have recognized this fact [21, 28, 35, 37] and utilize this technique

for performance gains. The most commonly used technique is called double-buffering.

In this technique, a program uses two sets of input and output buffers – one set for the

currently executing kernel and another set for the kernel to be executed next. While

the current kernel is executing, the host component of the program commands the DMA

engine to copy the input data for the next kernel into its input buffer. Simultaneously, it

commands that the output of the previous kernel be transferred out into the CPU buffer.

The PCIex bus can be simultaneously used in both directions. Once the current kernel

completes, the buffers are switched i.e, the buffer set of the completed kernel become

the buffer set of the next kernel. Two sets of buffers are used to ensure that the data

updated by the simultaneous computation and copy do not conflict.

Chapter 5. Data movement scheme: Details and further optimizations 64

5.3.2 Compute-copy overlap in our framework

In our framework, each tile executes on a GPU through a kernel call. Within a single

outer serial loop iteration, multiple parallel loop tiles can be distributed to the same

GPU. Since the tiles can be run in parallel, they do not have any conflicting data accesses

(dependences) among them. This provides two key benefits:

� The parallel tiles can be executed in any order.

� The flow-out data of a tile can be copied safely while another parallel tile is exe-

cuting on the same GPU.

Hence, we do not need to use the double buffering technique.

5.3.3 Implementing compute-copy overlap

We create two different command queues for each GPU; compute queue and data queue.

The kernel execution commands are enqueued in the compute queue and the data read

and write commands are enqueued in data queue. The runtime can process the different

command queues concurrently. For each tile we enqueue a kernel launch command on

the compute queue. We then enqueue a non-blocking read command for the flowout

bounding boxes on the data queue. This command is given an event dependency on the

previous kernel launch. This ensures that the flowout does not start until the associated

kernel computation is completed. Meanwhile, the host thread can go about enqueuing

subsequent computation and read commands. Once all the compute and copy commands

are enqueued, the GPU management thread on the host waits for the event status of a

flowout command to reach completion. Then the cpu to gpu flowin() function is invoked

which copies the flowout bounding boxes onto the destination GPUs. We again note

that this function can be invoked while a kernel execution is going on in the destination

GPU. This is because, since each GPU is executing a distributed parallel loop, the data

read by one GPU with in an outer serial iteration will not conflict with the data read

or written by another GPU in the same iteration. Figure 5.2a depicts the comparison

Chapter 5. Data movement scheme: Details and further optimizations 65

7LPH

:LWKRXW
FRPSXWH�FRS\
RYHUODS

:LWK
FRPSXWH�FRS\
RYHUODS

NHUQHO�H[HFXWLRQ FRS\RXW FRS\LQ

6,1*/(�/$5*(�7,/(

7,/(�� 7,/(�� 7,/(��

Figure 5.2: Benefit of Compute-copy overlap

7LPH

:LWKRXW
7LOH�UHRUGHULQJ

:LWK
7LOH�UHRUGHULQJ

NHUQHO�H[HFXWLRQ FRS\RXW FRS\LQ

7,/(�� 7,/(�� 7,/(��

7,/(�� 7,/(��7,/(��

&23<287�)520
7,/(��

Figure 5.3: Compute-copy overlap with and without tile reordering

of data movement overheads with and without compute-copy overlap. Without overlap,

the flowout starts only after the entire computation completes. With overlap however,

it starts immediately after the execution of the tile which has flowout data.

5.3.4 Maximizing compute-copy overlap

Even though compute-copy overlap provides significant improvements to the overall ex-

ecution time of programs, the extent of the improvement with just the earlier described

technique is not always maximum i.e., the copy time is not overlapped to the maximum

possible extent with respect to the computation time of the remaining tiles. In order to

gain maximum overlap, the copyout process should start as early as possible with respect

to the computation process. We notice that, in most programs each computation tile

does not have the same amount of coherency data to be moved into other GPUs. Some

Chapter 5. Data movement scheme: Details and further optimizations 66

tiles do not have any data to be copied out at all. In such cases, scheduling the tiles in

the decreasing order of their flowout data sizes can help achieve maximum compute-copy

overlap. Hence, at runtime, we compute the size of the flowout bounding boxes of each

tile and reorder the tile execution (within the same iteration) to be in the decreasing

order this size. Figure 5.3a depicts the execution time with and without tile reordering.

As we can see, in cases when tile2 or tile3 has flowout data, the copyout time can extend

beyond the actual computation time even with overlap. However, with tile reordering

we can ensure that the flowout can start at the earliest possible time point and hence

can have maximum overlap with computation time. Our experiments with this tech-

nique on the Intel-NVIDIA setup showed significant performance improvements for all

the benchmarks. We present these results in the next section.

Prog
Problem
sizes

Tile sizes
Device Exec time
comb - FOP FO FO-

cc
FO-
cctr

FOP-
cc

FOP-
cctr

floyd
10240 x
10240

32 x 32
1 CPU 890s – – – – – –
1 GPU 113s – – – – – –
2 GPUs – 65s 104s 78s 59s 61s 59s
4 GPUs – 43s 107s 98s 87s 40s 37s

lu
11264 x
11264

256 x 256
1 CPU 412s – – – – – –
1 GPU 77s – – – – – –
2 GPUs – 64s 147s 111s 111s 45s 45s
4 GPUs – 60s 208s 201s 201s 55s 55s

fdtd-2d
4096 x
10240 x
10240

32 x 32
1 CPU 1915s – – – – – –
1 GPU 397s – – – – – –
2 GPUs – 207s 236s 216s 199s 202s 199s
4 GPUs – 117s 164s 140s 117s 110s 100s

heat-2d
4096 x
10240 x
10240

32 x 32
1 CPU 1112s – – – – – –
1 GPU 266s – – – – – –
2 GPUs – 138s 157s 150s 134s 137s 133s
4 GPUs – 80s 124s 100s 93s 76s 67s

heat-3d
4096 x
512 x 512
x 512

32 x 32 x
32

1 CPU 3080s – – – – – –
1 GPU 1892s – – – – – –
2 GPUs – 1043s 1350s 1344s 1168s 1039s 997s
4 GPUs – 603s 1294s 1260s 1236s 593s 548s

Table 5.3: Results of compute-copy overlap on Intel-NVIDIA System (cc: compute-copy
overlap, cctr: compute-copy overlap with tile reordering)

Chapter 5. Data movement scheme: Details and further optimizations 67

 0

 20

 40

 60

 80

 100

 120

 140

1 16 32 64

T
o
ta

l
e
x

e
c
u
ti

o
n
 t

im
e
 (

se
c
o
n
d

s)

Tile factor

FO
FO−cc
FO−cctr

Figure 5.4: Performance of tile reordering with varying tile sizes for floyd-warshall

with FO scheme on a 2-GPU setup

5.4 Experimental results

Table 5.3 shows the performance of the benchmark programs with compute-copy overlap

– with and without tile reordering, for both FO and FOP schemes. We have shown

the numbers for FO scheme as well to get an insight on the benefits that our overlap

technique can provide when the volume of data transferred is high. We see that, for all

programs compute-copy overlap numbers are significantly better than those without it.

This is shown in FO-cc and FOP-cc columns (cc stands for compute-copy overlap). We

see that FO which had a high overhead of data movement to begin with benefits greatly

from our technique. This shows that, programs with high volume of data movement will

benefit greatly from this technique. These numbers are further improved by reordering

the tiles in the decreasing order of their flowout bounding box sizes. This is shown

in the FO-cctr and FOP-cctr columns (cctr stands for compute-copy overlap with tile

reordering) respectively.

For floyd, only the tile accessing the kth row will have flowout data. In the FO

case, the flowout data will be as large as the size of the tile. This adds significant

overhead to the overall execution time. Hence, FO case gains a significant speedup of

1.33× with compute-copy overlap over the without-overlap case. In the FOP case, floyd

Chapter 5. Data movement scheme: Details and further optimizations 68

requires only the kth row to be copied out. In a lexicographical scheduling of tiles, the

tile producing this flowout data starts from the first tile and moves towards later tiles

as k increases. For higher values of k, this causes flowout time to exceed beyond the

computation time of all tiles. Hence, a tile schedule in which the tile accessing the kth

row is always executed first will cause the flowout overhead to hidden to the maximum

extent possible. For heat2d, heat3d, and fdtd2d, in the FOP case, only the first and

last tiles distributed to each GPU within each serial loop iteration have flowout data.

With tile reordering, these two tiles get scheduled first thereby maximizing the overlap

of the flowout transfer time with the computation time of the remaining tiles. For our

chosen tiles sizes these three programs were able to achieve a mean speedup of 3.97×

on a 4-GPU machine over 1 GPU execution times. For all the programs, our overlap

technique combined with the FOP scheme achieved a geometric mean speed up of 2.97×

over 1 GPU execution time which is significantly better than the speed up of 1.53×

achieved without it.

Size of a tile plays an important role in determining its computation time and the

communication volume. In many communication schemes, the overhead of communica-

tion will be proportional to the tile size (eg: FO). In such cases, compute-copy overlap

provides a way to offset these overheads up to a certain extent for varying tile sizes.

This extent is determined by the actual computation time of the tile and by maximizing

compute-copy overlap we can utilize the computation time to the fullest extent thereby

maintain the same performance for different tile sizes.

Figure 5.4a provides a comparison of the execution times for floyd with FO scheme

on a 2-GPU machine and varying tile sizes. For floyd, the volume of communication in

FO scheme is exactly equal to the size of the tile. Hence the communication overhead

keeps increasing as the tile sizes are increased. The FO bar shows the execution time

without compute-copy overlap and we can clearly see that the execution time increases

proportional to the tile size. The same is the case even with overlap though the extent

of performance loss is smaller. However, with tile reordering, we see that the execution

time remains the same for tile size from 1 up to 32 and then increases at 64. This implies

Chapter 5. Data movement scheme: Details and further optimizations 69

that tile reordering was able to completely hide the overhead of data movement up to

tile size of 32 indicating its resilience to tile size selection.

Chapter 6

Related Work

To the best of our knowledge, there is no work in the literature which can be used

as a direct comparison to ours. The closest one is that of Kim et al [21]. However,

the implementation is not available for comparison. Hence, we provide only a detailed

discussion of this work.

Kim et al [21] propose a runtime system that takes a OpenCL program written for

a single device and automatically runs them on multiple GPUs on a single machine. In

this scheme, the uppermost and lowermost iterations of the partitioned work-group are

sampled at runtime to determine the array region accessed by that work-group. This is

similar to convex bounding box technique but done at runtime. Such a convex bounding

box can be a very large array region even when the actual accessed area is much smaller.

In the worst case, this can be as large as the entire array. To ensure consistency, this

Framework Allocation granularity Memory mgmt scheme Manual / Auto #devices

Kim et al [21] convex bounding box virtual CPU buffer automatic multiple
StarPU [3] user-provided MSI-based coherency manual multiple
CGCM [19] entire array modified runtime libraries automatic single
DyManD [18] entire array modified runtime libraries automatic single
Lee et al [23] entire array live variable analysis user-annotated single
Pai et al [28] x10CUDA Rail compiler inserted checks automatic single
Pluto-CUDA [5] entire array none automatic single
PPCG [41] entire array none automatic single
OpenACC [26] entire array none user-annotated single
BBMM (our) disjoint bounding boxes Runtime memory manager Automatic multiple

Table 6.1: Existing data allocation and buffer management schemes

70

Chapter 6. Related Work 71

scheme first moves the entire convex array region to the CPU even if one only a elements

within the region is actually updated. Such a data movement will involve significant

coherency overheads due to limited PCIex bandwidth. Figures 2.3g and 2.3h give a good

estimate of the inefficiencies inherent in this scheme in terms of data allocation sizes and

coherency overheads.

OpenACC [26] is a directive-based framework for accelerating applications using

GPUs. It provides a set of compute, data and control flow directives for executing

parallel for loops on accelerators. From memory management aspect, OpenACC pro-

vides copyin and copyout clauses which can be used to transfer data in and out of the

GPU memory. It also provides deviceptr clause which can be used to mark data as

already allocated on a GPU and hence provides a basic facility to reuse data already on

the GPU. However, when it comes to multi-GPU machines, OpenACC leaves the burden

of array distribution and coherency on the programmer. Programmer has to explicitly

perform the distribution using either OpenACC provided data clauses or use CUDA [11]

for memory allocation and data transfers. Integrating BBMM into OpenACC framework

can bridge this gap and enable automatic data scaling for affine loop nests.

StarPU [3] is a dynamic task creation and scheduling framework for heterogeneous

systems. StarPU’s strength lies in its ability to automatically schedule tasks on one

or more compute devices. However, StarPU’s support for data allocation is completely

manual. The programmer has the responsibility of identifying data allocation granularity,

task-to-data mapping and inter-task data dependences. These are done automatically

in BBMM. StarPU synchronizes data at allocation size granularity using the MSI-based

coherency protocol. Hence, an entire blocks will be synchronized even if a very small

portion of it is actually written by the task. This will lead to significant inefficiencies.

BBMM’s techniques can be adapted into StarPU framework to complement its automatic

scheduling schemes with automatic data allocation as well.

CUDA [11] 4.0 and higher provide an abstraction called Unified Virtual Addressing

(UVA). UVA abstracts away from the programmer the actual location of data, whether

on any of the GPUs or on the CPU. Though this provides a cleaner and easier API for

Chapter 6. Related Work 72

the programmer to perform data allocation and transfers, it still has to be done manually

when dealing with arrays larger than a single GPU’s memory (since UVA’s allocation

unit granularity for arrays is the entire array). If multiple regions of a large array are used

by a kernel this task remains tedious. The same applies to inter-GPU data movement

that should be done to keep the manually distributed array regions across multiple GPUs

in sync. In addition, reuse of data across kernels scheduled on the same GPU will also

have to be managed manually. All of this is automatically handled by our system. In

fact, UVA could be internally used by BBMM to simplify its implementation.

Baskaran et al [4] propose a data allocation scheme in the context of local memory

optimization. This algorithm first identifies non-intersecting data spaces and groups

them together. Then, for each such group, it finds the convex union (convex hull) of all

the points in the partition and allocates a single convex bounding box encapsulating the

entire partition. This scheme only works if the access functions are already disjoint and

can be determined to be so at compile time. However for cases as shown in figures 2.3c

this will not be the case and will be put in the same partition. Unlike our algorithm,

this approach does not try to perform any operations to create disjoint sets if they are

not already so. The bounding box over the convex hull can be a very large array region

even when the actual accessed area is much smaller.

Größlinger [14] proposes techniques for precise scratchpad management on GPUs.

The technique applies in our data scaling context as well. Even though it reduces memory

utilization in some cases when compared to bounding box based schemes, the cost of

access functions computed through the barvinok library can become prohibitively high

due to an explosion in the number of index checks that need to be done. This happens

when there are multiple distinct access functions, and in these cases it does not appear

to be a practical solution.

There are many other works which propose compile-time and runtime techniques to

ease different aspects of programming GPU setups [5, 18, 19, 23, 24, 28, 34–36, 41, 42].

Most of these target single GPU setups and hence they allocate entire array on the GPU.

Table 6.1 gives a brief summary of these works from the aspect of memory management.

Chapter 6. Related Work 73

Lee et al. [24] propose techniques to map C code with OpenMP annotations into

thread blocks and threads in a CUDA kernel. With OpenMPC [23], they extend this work

with proposals for new GPU specific constructs. These works target code generation for

a single GPU for both regular and irregular data accesses. The shared data in OpenMP

are mapped into the global memory on the GPU. For shared arrays, the entire array is

allocated on the GPU. Our work can complement this work in terms of data allocation

for array data and affine loop nests.

Jablin et al. [18, 19], describe CPU-GPU communication management and optimiza-

tion systems - CGCM and DyManD. In both the works, data is allocated and moved at

the granularity of an allocation unit which for an array is the entire array. The works

does not address multi-GPU scenarios. However, these works handle both regular and

irregular data whereas we only handle affine array data but more efficiently than these

two works.

X10 [43] is a programming language for shared and distributed-memory systems that

uses the Partitioned Global Address Space (PGAS) memory model. X10 provides basic

primitives to distribute a set of computations across multiple places (processing units)

each of which contain some data and perform activities that operate on the data. In this

direction, X10 provides API for defining Array and Regions which can be distributed

across places. It also provides set operations on these regions. X10 has a CUDA exten-

sion which provides users with the facility to utilize X10 features with CUDA. However,

like CUDA and OpenCL, users have to manually perform data allocation, memory man-

agement and coherency handling using the basic API provided by the language.

Wolfe [42] describes the design of the PGI accelerator framework. PGI is a commer-

cially available accelerator product from Portland group. However the product does not

support automatic distribution of loops among multiple GPUs. To use multiple GPUs

user has to explicitly create tasks and schedule them on different GPUs using the provided

annotations. HMPP [34] is a commercially available accelerator programming framework

from CAPS enterprise. HMPP has an OpenCL code generator in their framework. How-

ever to the best of our knowledge, HMPP does not support automatically distributing

Chapter 6. Related Work 74

loops across multiple GPUs.

Pai et al [28] propose a compiler assisted runtime coherence system that moves data

between the CPU and GPU only when the data on either device is stale. The data is

transferred at the granularity of a CUDA X10 Rail. With each rail a status information

is maintained which tells whether the rail is stale or not. Only if the rail is stale, and it

is being read by another device, then data is moved between devices. For arrays, a Rail

is an entire array and hence allocation happens at the array granularity. Even in terms

of coherency, the work suffers from the same shortcoming as that of CGCM in that even

if one element in a Rail is written to, then the entire array has to be synchronized.

Pluto-CUDA [5] and PPCG [41] generate CUDA code from serial C code for a single

GPU. However they both lack a sophisticated memory allocation scheme. The entire

input array is allocated on each device.

Chapter 7

Conclusions

7.1 Summary

Multi-GPU machines are being increasingly used in HPC setups. However, manually

programming these machines to extract the combined power of the GPUs remains a

tedious, time consuming and error-prone task. In order to ease the effort involved in

programming multi-GPU machines, it is necessary to solve various compiler and runtime

challenges in an automatic, scalable, and efficient way. We have addressed one such

challenge, that of data allocation and memory management, that was not previously

addressed in an efficient way.

We presented a fully automatic data allocation and buffer management scheme for

affine loop nests that allows parallel execution on multi-GPU machines. Through this

scheme, data allocation, buffer management, and data transfers were all done at the

granularity of (hyper)-rectangular regions of arrays (bounding boxes). Doing so allowed

us to perform common set operations on these bounding boxes at runtime with negligible

overhead. We used these operations to minimize data allocation sizes, the number of

redundant allocations and data transfers, and exploit inter-tile reuse. We also presented

the adaptation of an efficient inter-GPU data movement scheme that significantly re-

duced the coherency overhead. We further improved this with a technique to achieve

maximum compute-copy overlap so that data movement overhead can be hidden within

75

Chapter 7. Conclusions 76

the computation time.

On a 4-GPU machine, our scheme was able to achieve allocation size reductions of

up to 75% when compared to existing schemes and allow excellent weak scaling. Our

data movement scheme was able to significantly reduce the coherency overhead with the

communication volume reduced by a factor of 11× to 83× over state-of-the-art, trans-

lating into a mean execution time speedup of 1.53×. We compared our automatically

generated OpenCL codes with manually written multi-GPU OpenCL and OpenACC

codes and found that they yielded performance of at least 88% of the performance of

manual OpenCL codes and outperformed the OpenACC codes. We also demonstrated

the potential of our scheme to swap-in and swap-out required data, by showing data

scaling with applications on input sizes significantly greater than the combined memory

size of all GPUs. All of these were achieved while incurring very low runtime overhead

– of less than 0.1% of overall execution time.

Our work is suited for any compiler/runtime system targeting GPUs. Doing so will

bridge the data allocation gap that currently exists in programming these systems.

7.2 Future work

� The core ideas and techniques used in our work are generic and can be easily

extended for memory management in non-GPU setups such as distributed memory

clusters, and heterogeneous setup consisting of both CPU and GPU devices.

� The principle of rectangular set operations can be extended to non-affine programs

as well, if one can come up with a way to approximate the region of array accessed

by the program into a hyper-rectangle. One example case that can be targeted is

sparse-matrix computations.

� Our technique can be ideally integrated either into a OpenACC compiler or a tool

that can automatically generate OpenACC directives for affine programs. This can

further reduce the programmer effort to scale programs on multi-GPU systems.

References

[1] Vikram Adve and John Mellor-Crummey. Using integer sets for data-parallel pro-

gram analysis and optimization. In Proceedings of the ACM SIGPLAN 1998 confer-

ence on Programming language design and implementation, PLDI ’98, pages 186–

198, New York, NY, USA, 1998. ACM.

[2] Saman P. Amarasinghe and Monica S. Lam. Communication optimization and code

generation for distributed memory machines. In Proceedings of the ACM SIGPLAN

1993 conference on Programming language design and implementation, PLDI ’93,

pages 126–138, New York, NY, USA, 1993. ACM.

[3] C. Augonnet, S. Thibault, R. Namyst, and P.A. Wacrenier. Starpu: A unified plat-

form for task scheduling on heterogeneous multicore architectures. In Concurrency

and Computation: Practice and Experience, 2009.

[4] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, J. Ra-

manujam, Atanas Rountev, and P. Sadayappan. Automatic data movement and

computation mapping for multi-level parallel architectures with explicitly managed

memories. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles

and practice of parallel programming, PPoPP ’08, pages 1–10, New York, NY, USA,

2008. ACM.

[5] Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan. Automatic c-

to-cuda code generation for affine programs. In Proceedings of the 19th joint Eu-

ropean conference on Theory and Practice of Software, international conference on

77

REFERENCES 78

Compiler Construction, CC’10/ETAPS’10, pages 244–263, Berlin, Heidelberg, 2010.

Springer-Verlag.

[6] Cédric Bastoul. Clan: The Chunky Loop Analyzer, 2005. The Clan User guide.

[7] Uday Bondhugula. Compiling affine loop nests for distributed-memory parallel

architectures. In ACM/IEEE Supercomputing (SC ’13), Denver, Colorado, USA,

November 2013. ACM.

[8] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical

automatic polyhedral parallelizer and locality optimizer. In Proceedings of the 2008

ACM SIGPLAN conference on Programming language design and implementation,

PLDI ’08, pages 101–113, New York, NY, USA, 2008. ACM.

[9] Daniel Chavarŕıa-Miranda and John Mellor-Crummey. Effective communication

coalescing for data-parallel applications. In Proceedings of the tenth ACM SIGPLAN

symposium on Principles and practice of parallel programming, PPoPP ’05, pages

14–25, New York, NY, USA, 2005. ACM.

[10] M. Classen and M. Griebl. Automatic code generation for distributed memory

architectures in the polytope model. In IEEE IPDPS, April 2006.

[11] NVIDIA CUDA, 2011. http://developer.nvidia.com/object/cuda.html.

[12] Roshan Dathathri, Chandan Reddy, Thejas Ramashekar, and Uday Bondhugula.

Generating efficient data movement code for heterogeneous architectures with

distributed-memory. In The 22nd International Conference on Parallel Architectures

and Compilation Techniques (ACM/IEEE PACT), Edinburgh, Scotland, 2013.

[13] NVIDIA Fermi Compute Architecture, 2010. http://www.nvidia.in/content/

PDF/fermi white papers/NVIDIA Fermi Compute Architecture Whitepaper.pdf.

[14] Armin Größlinger. Precise management of scratchpad memories for localising array

accesses in scientific codes. In Proceedings of the 18th International Conference on

REFERENCES 79

Compiler Construction: Held as Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2009, CC ’09, pages 236–250, Berlin, Heidelberg,

2009. Springer-Verlag.

[15] Mark J. Harris, Greg Coombe, Thorsten Scheuermann, and Anselmo Lastra.

Physically-based visual simulation on graphics hardware. In Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, 2002.

[16] J. L. Hennessy and D. A. Patterson. Compute Architecture: A Quantitative Ap-

proach. Elsevier, Fourth Edition.

[17] Integer Set Library, 2012. Sven Verdoolaege, An Integer Set Library for Program

Analysis (http://www.ohloh.net/p/isl).

[18] Thomas B. Jablin, James A. Jablin, Prakash Prabhu, Feng Liu, and David I. August.

Dynamically managed data for cpu-gpu architectures. In Proceedings of the Tenth

International Symposium on Code Generation and Optimization, CGO ’12, pages

165–174, New York, NY, USA, 2012. ACM.

[19] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson, Stephen R.

Beard, and David I. August. Automatic cpu-gpu communication management and

optimization. In Proceedings of the 32nd ACM SIGPLAN conference on Program-

ming language design and implementation, PLDI ’11, pages 142–151, New York,

NY, USA, 2011. ACM.

[20] Khronos Group. http://www.khronos.org.

[21] Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. Achieving a single

compute device image in opencl for multiple gpus. In Proceedings of the 16th ACM

symposium on Principles and practice of parallel programming, PPoPP ’11, pages

277–288, New York, NY, USA, 2011. ACM.

[22] Okwan Kwon, Fahed Jubair, Rudolf Eigenmann, and Samuel Midkiff. A hybrid

REFERENCES 80

approach of openmp for clusters. In Proceedings of the 17th ACM SIGPLAN sympo-

sium on Principles and Practice of Parallel Programming, PPoPP ’12, pages 75–84,

New York, NY, USA, 2012. ACM.

[23] Seyong Lee and Rudolf Eigenmann. Openmpc: Extended openmp programming and

tuning for gpus. In Proceedings of the 2010 ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and Analysis, SC ’10, pages

1–11, Washington, DC, USA, 2010. IEEE Computer Society.

[24] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. Openmp to gpgpu: a compiler

framework for automatic translation and optimization. In Proceedings of the 14th

ACM SIGPLAN symposium on Principles and practice of parallel programming,

PPoPP ’09, pages 101–110, New York, NY, USA, 2009. ACM.

[25] NVIDIA GPU Computing SDK, 2010. https://developer.nvidia.com/gpu-

computing-sdk.

[26] OpenACC Application Programming Interface, 2012. http://www.openacc-

standard.org/.

[27] OpenCL, 2011. http://www.khronos.org/opencl.

[28] Sreepathi Pai, R. Govindarajan, and Matthew J. Thazhuthaveetil. Fast and efficient

automatic memory management for gpus using compiler-assisted runtime coherence

scheme. In Proceedings of the 21st international conference on Parallel architectures

and compilation techniques, PACT ’12, pages 33–42, New York, NY, USA, 2012.

ACM.

[29] HPC opensource project, 2012. www.par4all.org.

[30] Portland Group Inc., 2012. http://www.pgroup.com/.

[31] PLUTO: A polyhedral automatic parallelizer and locality optimizer for multicores.

http://pluto-compiler.sourceforge.net.

REFERENCES 81

[32] The polybench project, 2012. http://polybench.sourceforge.net.

[33] PolyLib - A library of polyhedral functions, 2010. http://icps.u-strasbg.fr/polylib/.

[34] François Bodin Romain Dolbeau, Stéphane Bihan. Hmpp: A hybrid multi-core

parallel programming environment. In Workshop on General Purpose Processing on

Graphics Processing Units (GPGPU), 2007.

[35] Fengguang Song and Jack Dongarra. A scalable framework for heterogeneous gpu-

based clusters. In Proceedinbgs of the 24th ACM symposium on Parallelism in al-

gorithms and architectures, SPAA ’12, pages 91–100, New York, NY, USA, 2012.

ACM.

[36] Fengguang Song, Stanimire Tomov, and Jack Dongarra. Enabling and scaling matrix

computations on heterogeneous multi-core and multi-gpu systems. In Proceedings of

the 26th ACM international conference on Supercomputing, ICS ’12, pages 365–376,

New York, NY, USA, 2012. ACM.

[37] Kyle Spafford, Jeremy Meredith, and Jeffrey Vetter. Maestro: data orchestration

and tuning for opencl devices. In Proceedings of the 16th international Euro-Par

conference on Parallel processing: Part II, 2010.

[38] Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk, and

Charles E. Leiserson. The pochoir stencil compiler. In Proceedings of the 23rd

ACM symposium on Parallelism in algorithms and architectures, SPAA ’11, pages

117–128, New York, NY, USA, 2011. ACM.

[39] Sanket Tavarageri, Albert Hartono, Muthu Baskaran, Louis-Noel Pouchet, J. Ra-

manujam, and P. Sadayappan. Parametric Tiling of Affine loop nests. Technical

report, 2013.

[40] The Top 500 Supercomputers. http://www.top500.org.

REFERENCES 82

[41] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian

Tenllado, and Francky Catthoor. Polyhedral parallel code generation for cuda. ACM

Trans. Archit. Code Optim., 9(4):54:1–54:23, January 2013.

[42] Michael Wolfe. Implementing the pgi accelerator model. In Proceedings of the 3rd

Workshop on General-Purpose Computation on Graphics Processing Units, GPGPU

’10, pages 43–50, New York, NY, USA, 2010. ACM.

[43] X10 programming language, 2013. http://x10-lang.org/.

	Acknowledgements
	Publications based on this Thesis
	Abstract
	List of Figures
	List of Algorithms
	Introduction
	GPUs in high performance computing
	Towards Multi-GPU machines
	Programming challenges on a multi-GPU machine
	Computation partitioning and load balancing
	Data allocation and buffer management
	Inter-GPU data movement
	Existing approaches

	Affine loop nests
	Running affine loop nests on multi-GPU machine

	Need for a multi-GPU memory manager
	Desired capabilities

	Bounding Box based Memory Manager
	Contributions

	Motivating Example
	General structure of affine programs running on a multi-GPU machine
	Floyd-Warshall algorithm
	Per-tile data allocation
	Inter-GPU coherency
	Exploiting inter-tile reuse

	Background
	Overview of GPU architecture
	NVIDIA Fermi GPU architecture

	OpenCL programming model
	OpenCL terminologies
	OpenCL memory hierarchy
	OpenCL runtime API
	Sample OpenCL code

	Polyhedral model

	BBMM - Bounding Box Based Memory Manager
	Bounding boxes and set operations
	High-level overview of BBMM
	Input to BBMM - computation tile
	Compile time component
	Runtime component

	Data allocation scheme
	Initial bounding box extraction at compile time
	Disjoint set of bounding boxes at runtime
	Example
	Discussion

	Buffer management
	Design overview
	Inter-tile data reuse
	Freeing up space on a GPU – box-in and box-out
	Relationship between tiles, bounding boxes and multiple GPUs

	Inter-GPU coherency
	High-level overview of BBMM's coherency scheme
	Details of BBMM's coherency scheme

	Host and kernel code generation
	Structure of the generated host code
	Structure of the parameterized GPU kernel

	Implementation
	Experimental setup and benchmarks
	Evaluation parameters and results
	Overhead of the runtime library
	Performance of programs with data scaling
	Comparison of data allocation sizes
	Benefits of inter-tile data reuse
	Effect of access function split
	Benefit of box-in and box-out
	Comparison with manual code

	Data movement scheme: Details and further optimizations
	Brief description of the schemes
	The Flow-Out (FO) scheme
	The Flow-Out Partitioning (FOP) scheme

	Experimental Evaluation
	Experimental setup
	Benchmarks
	Evaluation
	Results

	Further optimizations: Maximizing compute-copy overlap
	Compute-copy overlap
	Compute-copy overlap in our framework
	Implementing compute-copy overlap
	Maximizing compute-copy overlap

	Experimental results

	Related Work
	Conclusions
	Summary
	Future work

	References

