
Automatic Storage Optimization of Arrays in Affine
Loop Nests

A THESIS

SUBMITTED FOR THE DEGREE OF

Doctor of Philosophy

IN COMPUTER SCIENCE AND ENGINEERING

by

Somashekaracharya G. Bhaskaracharya

Computer Science and Automation

Indian Institute of Science

BANGALORE – 560 012

July 2016

© Somashekaracharya G. Bhaskaracharya

July 2016

All rights reserved

TO

My family, friends and colleagues

ACKNOWLEDGEMENTS

I am deeply indebted to my advisor, Dr. Uday Bondhugula, for guiding me at every stage

of my research work. It has truly been an honour to work with him. I hope I have justified

the trust he invested in me when he agreed to be my advisor, despite the commitment

to academic work only being of a part-time nature from my side. His constant support

and optimism were major factors in helping me juggle both, academic research and office

work at National Instruments, through the various ups and downs in these last five years.

He was ever ready to discuss new ideas, however wild (I still remember a discussion on

the storage optimization problem we had in the Dubai airport terminal, very late into the

night, while waiting for our return flight to Bangalore). And almost invariably, I returned

from such discussions with more ideas to work on. This work would, quite simply, not

have been possible without his tremendous guidance. I offer my sincerest thanks!

I would like to express my gratitude to Dr. Albert Cohen for all his insightful comments

and suggestions. Interactions with him, over email as well as in person every now and

then, helped me immensely in refining the ideas presented here. His belief in their merit

kept me inspired and motivated. I would also like to thank my organizational supervisor,

Dr. Dinesh Nair, who gave me complete freedom in my research work.

I have greatly benefited through help from various other quarters. Firstly, I would like

to thank my labmates Chandan, Roshan, Irshad, Vinay, Raviteja, Aravind, Thejas, Vinayak

i

ii

for their generous assistance and suggestions on so many occasions, despite already being

burdened with their own work. I am also very grateful to my friends and colleagues at

NI who went out of their way in helping me pursue my academic goals to the fullest

extent possible – to Anand, Gowrishankar, Rajanikanth for creating this opportunity for

me; to Praveen, Subbaiah and Prashanth for their managerial support; and last but not

the least, to my team-mates Nikhil, Bharath, Rakesh, Chethan and Ashwin. I would like to

acknowledge the monetary assistance provided by NI towards my studies.

As the proverbial dwarf standing on the shoulders of giants, I owe a great deal to

the authors of various tools (such as Clan, GLPK, ISL, Pet, Pluto etc) that I have used to

implement the ideas presented in this work. Valuable feedback from several anonymous

reviewers was also very helpful – my thanks to all these reviewers.

Finally, I would like to dedicate this work to my parents, G. S. Bhaskaracharya and

H. K. Pushpa Latha, who have always encouraged me in all my pursuits; my thanks also

to my brother and sister-in-law. The unflinching moral support at home helped me stay

focused on my work.

PUBLICATIONS BASED ON THIS THESIS

1. Somashekaracharya G. Bhaskaracharya, Uday Bondhugula, PolyGLoT: A Polyhedral

Loop Transformation Framework for a Graphical Dataflow Language, International

conference on Compiler Construction (CC 2013), Rome, Italy, pages 123 - 143,

March 2013.

2. Somashekaracharya G. Bhaskaracharya, Uday Bondhugula, Albert Cohen, Automatic

Storage Optimization for Arrays, ACM Transactions on Programming Languages and

Systems (TOPLAS), vol 38, issue 3, pages 11:1–11:23, April 2016.

3. Somashekaracharya G. Bhaskaracharya, Uday Bondhugula, Albert Cohen, SMO: An

Integrated Approach to Intra-Array and Inter-Array Storage Optimization, ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL), St.Petersberg,

USA, pages 526 - 538, Jan 2016.

iii

ABSTRACT

Efficient memory usage is crucial for data-intensive applications as a smaller memory foot-

print ensures better cache performance and allows one to run a larger problem size given

a fixed amount of main memory. The solutions found by existing techniques for automatic

storage optimization for arrays in affine loop-nests, which minimize the storage require-

ments for the arrays, are often far from good or optimal and could even miss nearly all

storage optimization potential. In this work, we present a new automatic storage opti-

mization framework and techniques that can be used to achieve intra-array as well as

inter-array storage reuse within affine loop-nests with a pre-determined schedule.

Over the last two decades, several heuristics have been developed for achieving com-

plex transformations of affine loop-nests using the polyhedral model. However, there are

no comparably strong heuristics for tackling the problem of automatic memory footprint

optimization. We tackle the problem of storage optimization for arrays by formulating it

as one of finding the right storage partitioning hyperplanes: each storage partition corre-

sponds to a single storage location. Statement-wise storage partitioning hyperplanes are

determined that partition a unified global array space so that values with overlapping live

ranges are not mapped to the same partition. Our integrated heuristic for exploiting intra-

array as well as inter-array reuse opportunities is driven by a fourfold objective function

that not only minimizes the dimensionality and storage requirements of arrays required

v

vi

for each high-level statement, but also maximizes inter-statement storage reuse.

We built an automatic polyhedral storage optimizer called SMO using our storage par-

titioning approach. Storage reduction factors and other results that we obtained from

SMO demonstrate the effectiveness of our approach on several benchmarks drawn from

the domains of image processing, stencil computations, high-performance computing, and

the class of tiled codes in general. The reductions in storage requirement over previous

approaches range from a constant factor to asymptotic in the loop blocking factor or array

extents – the latter being a dramatic improvement for practical purposes.

As an incidental and related topic, we also studied the problem of polyhedral compi-

lation of graphical dataflow programs. While polyhedral techniques for program trans-

formation are now used in several proprietary and open source compilers, most of the

research on polyhedral compilation has focused on imperative languages such as C, where

the computation is specified in terms of statements with zero or more nested loops and

other control structures around them. Graphical dataflow languages, where there is no

notion of statements or a schedule specifying their relative execution order, have so far

not been studied using a powerful transformation or optimization approach. The execu-

tion semantics and referential transparency of dataflow languages impose a different set

of challenges. In this work, we attempt to bridge this gap by presenting techniques that

can be used to extract polyhedral representation from dataflow programs and to synthe-

size them from their equivalent polyhedral representation. We then describe PolyGLoT,

a framework for automatic transformation of dataflow programs that we built using our

techniques and other popular research tools such as Clan and Pluto. For the purpose of

experimental evaluation, we used our tools to compile LabVIEW, one of the most widely

used dataflow programming languages. Results show that dataflow programs transformed

using our framework are able to outperform those compiled otherwise by up to a factor of

seventeen, with a mean speed-up of 2.30× while running on an 8-core Intel system.

CONTENTS

Acknowledgements i

Publications based on this Thesis iii

Abstract v

1 Introduction 1
1.1 Automatic Storage Optimization . 1
1.2 Polyhedral Compilation of Dataflow Programs 8

2 Background 11
2.1 Affine Hyperplane . 11
2.2 Polyhedral Model . 11

2.2.1 Overview of the Polyhedral Model . 11
2.3 Farkas’ Lemma . 13
2.4 Successive Modulo Technique . 14
2.5 Rectangular Hull for Inter-Array Reuse . 15
2.6 LabVIEW – Language and Compiler . 15
2.7 An Abstract Model of Dataflow Programs . 17

2.7.1 Inplaceness . 19

3 Intra-Array Storage Optimization 21
3.1 A Simple Example . 21
3.2 Storage Hyperplanes and Conflict Satisfaction 24
3.3 A Partitioning Approach . 25

3.3.1 Conflict Set Specification . 25
3.4 Finding a Storage Hyperplane . 26

3.4.1 Encoding Satisfaction with Decision Variables 27
3.4.2 Linearizing the Constraints . 29

vii

viii CONTENTS

3.4.3 A Greedy Double-Objective . 30
3.5 Finding Storage Hyperplanes Iteratively . 31

3.5.1 Example Revisited . 34
3.5.2 Correctness and Termination . 34

3.6 Optimality . 35
3.7 Examples . 36

3.7.1 Blur Filter - Interleaved Schedule . 36
3.7.2 Blur filter - Tiled Execution . 38
3.7.3 Lattice-Boltzmann Method (LBM) . 40
3.7.4 Diamond Tiling . 41

3.8 Enumerating Storage Mappings . 43
3.8.1 Alternative Storage Hyperplanes . 44
3.8.2 Diamond Tiling Revisited . 48

3.9 Related Work . 49

4 An Integrated Approach to Storage Optimization 53
4.1 A Simple Example . 53

4.1.1 Successive Modulo + Rectangular Hull 56
4.2 A Global Array Space . 57
4.3 Conflict Satisfaction in a Global Array Space 58
4.4 A Global Array Space Partitioning Approach . 60

4.4.1 Global Conflict Set Specification . 61
4.5 Finding Storage Hyperplanes . 61

4.5.1 Analyzing Intra-Statement Conflicts . 62
4.5.2 Analyzing Inter-Statement Conflicts . 63
4.5.3 A Greedy Objective . 64
4.5.4 Finding Storage Hyperplanes Iteratively 67
4.5.5 Correctness, Termination and Optimality 70
4.5.6 Array Decoalescing . 70

4.6 Examples . 73
4.6.1 Blur filter . 74
4.6.2 Smoothing . 76

4.7 Generalized Enumerative Heuristic . 79
4.8 Related Work . 81

5 SMO - A Polyhedral Storage Optimizer 83
5.1 Storage Mappings for Contracting Intra-Array Storage 88

5.1.1 Impact on Performance and Analysis . 89
5.2 Storage Mappings for Exploiting Inter-Array Reuse 93
5.3 Storage Mappings Using Enumerative Heuristic 96

CONTENTS ix

6 Polyhedral Compilation Of A Graphical Dataflow Language 101
6.1 Extracting the Polyhedral Representation . 101

6.1.1 Challenges . 102
6.1.2 Static Control Dataflow Diagram (SCoD) 103
6.1.3 A multi-dimensional schedule of compute-dags 106

6.2 Code Synthesis . 111
6.2.1 Input . 111
6.2.2 Synthesizing a Dataflow Diagram . 111

6.3 The PolyGLoT Auto-Transformation Framework 118
6.4 Experimental Evaluation . 119
6.5 Related Work . 121

7 Conclusions 125

Bibliography 127

LIST OF TABLES

5.1 Storage reduction obtained using our approach (SMO) compared to the
baseline successive modulo technique ([LF98]) with B being the loop block-
ing factor . 84

5.2 Performance of various benchmarks with the storage mappings shown in
Table 5.1 . 85

5.3 Analysis of the performance of various benchmarks (shown in Table 5.2)
using VTune . 86

5.4 Analysis of the performance of various benchmarks (shown in Table 5.2)
using VTune (continued from Table 5.3) . 87

5.5 Execution time of multiple instances of LBMD2Q9 being run in a multipro-
grammed fashion. 91

5.6 Execution time of multiple instances of LBMD3Q27 being run in a multipro-
grammed fashion. 92

5.7 Benchmark performance with the storage mappings of Table 5.8 94
5.8 Storage reduction obtained using our approach (SMO) compared to the

baseline (successive modulo [LF98] followed by rectangular hull), where B
is the loop blocking factor . 95

5.9 Various modulo storage mappings enumerated using Algorithm 2 compared
to the baseline (successive modulo [LF98], where B is the loop blocking factor 98

5.10 Various modulo storage mappings enumerated using Algorithm 2 compared
to the baseline (successive modulo [LF98], where B is the loop blocking factor 99

6.1 Summary of performance (sequential and parallel execution on an 8-core
machine) . 120

xi

LIST OF FIGURES

1.1 Storage requirement for the outlined tile (of size T) can be reduced to 2T−1. 3
1.2 A stencil using a ping-pong buffer . 5
1.3 Storage optimization of ping-pong style 1-d stencil (from 2N to N+1) . . . 6

2.1 Polyhedral representation of a loop nest in geometric and linear algebraic
form . 12

2.2 Example of input code, the corresponding original schedule, a new schedule
and transformed code. 12

2.3 matmul in LabVIEW . 16
2.4 DAG of the top-level diagram of matmul. 18

3.1 The geometrical representation in Figure 3.1(d) shows the array space A
written to by statement S in the code snippet shown in Figure 3.1(a). The
red double-headed arrows in Figure 3.1(d) denote the various conflicts as-
sociated with the array index (t ′, i′). 22

3.2 Storage hyperplane (−1,1) satisfies all conflicts 34
3.3 Different versions of 2-stage blur filter. 37
3.4 Blur filter (interleaved schedule) – set of conflicts associated with index

(y, x) and their geometrical representation. 37
3.5 Tiled execution of blur filter: t x and t y are the tile iterators whereas x and

y are the intra-tile iterators. B is the tile size. 38
3.6 Blur filter (tiled execution) – conflict sets and their geometrical representa-

tion. 39
3.7 As in a stencil, node A[t ′, i′, j′], in Figure 3.7(b), depends on neighboring

nodes from the previous time step. 41
3.8 AB is the data tile written to by iterations within the tile outlined in black.

Live-out data in yellow. 42
3.9 Diamond tiling – conflict set and its geometric representation. 43

xiii

xiv LIST OF FIGURES

4.1 Inter-statement and intra-statement conflict sets for 1-d ping-pong style
stencil 1.2. 54

4.2 The red arrows denote the intra-statement conflicts (see Figure 4.1(c)). . . 55
4.3 The orange arrows denote inter-statement conflicts (cf. Figure 4.1(d)). . . . 57
4.4 Storage hyperplane (0,−1, 1) satisfies all conflicts. 73
4.5 The conflict sets representing the intra-tile conflicts (j, x , y) ./ (j′, x ′, y ′) in

the global array space A are shown in Figure 4.5(a). Statements S0 and S1

write to the data tiles A0T and A1T respectively 75
4.6 Smoothing in multi-grid methods using the Jacobi 2-d stencil 77
4.7 Storage optimization of Jacobi 2-d smoothing in multi-grid methods 78
4.8 Storage mappings obtained for Jacobi 2-d smoothing (refer Figure 4.7) . . . 79

6.1 Single-element arrays and contradiction in schedule of compute-dags. . . . 107
6.2 A high-level overview of PolyGLoT . 118

CHAPTER 1

INTRODUCTION

Efficient storage management for array variables in a program requires that memory loca-

tions be reused as much as possible, thereby minimizing their storage requirement. Con-

sider a statement, which writes to an array, appearing within an arbitrarily nested loop.

Two dynamic instances of the statement can store values that they compute to the same

memory location provided the lifetimes of these values do not overlap. Therefore, most

solutions to this problem are schedule-dependent. Storage optimization can be performed

soon after execution reordering transformations have been applied, but before generating

the final transformed code.

1.1 Automatic Storage Optimization

Automatic techniques that reduce the storage requirements are quite crucial for data-

intensive applications. In several cases, a programmer is particularly interested in running

a dataset while utilizing the entire main memory capacity of a system. In such cases, per-

formance (execution time) is secondary. Storage optimization allows a programmer to run

a larger problem size for a given main memory capacity. When using multiple applications,

1

2 1. Introduction

it also allows more applications to fit in memory. In addition, storage optimization can also

potentially improve performance as a direct result of a smaller memory footprint. It has

also proved to be a critical optimization for domain-specific compilers. Image process-

ing pipelines [RKBA+13] and stencil computations are two example domains where code

generators rely on analysis to reduce the peak memory usage of the generated code. Com-

pilers for functional languages with arrays, or dataflow languages with single-assignment

semantics also need copy-avoidance to maximize memory reuse [AMMB+09].

The scope of programs that we consider for this work is a class of codes known as

affine loop nests. Affine loop nests are sequences of arbitrarily nested loops (perfect or

imperfect) where data accesses and loop bounds are affine functions of loop iterators

and program parameters (symbols that do not vary within the loop nest). Due to the

affine nature of data accesses, these loop program portions are statically predictable and

can be analyzed and transformed using the polyhedral compiler framework [ASUL06].

Significant advances have been made in memory optimization for affine loop nests or

its restricted forms [WR96, LF98, SCFS98, TVSA01, DSV05, ABD07]. However, we first

show that a good memory optimization technique is still missing. The solutions found

by existing works for several commonly encountered cases are far from good or optimal

and could even miss nearly all storage optimization potential. Our method builds on the

advances of the lattice-based memory contraction model [DSV05, ABD07], but approaches

the problem in a new and very different way.

The storage optimization problem for arrays can be viewed as contracting the array

along one or more dimensions to fixed sizes, or contracting along directions different from

those along which the array is originally indexed. Thus, an approach to contraction can

be viewed as one that finds: (1) good directions along which to contract (and the order

in which to contract) in case the original ones are not good, and (2) the minimal sizes to

which each of the chosen dimensions can be contracted. While the latter part was first

comprehensively studied by Lefebvre and Feautrier [LF98], there is no heuristic available

to obtain good solutions to the former. Choosing the right directions and their ordering

impacts both the dimensionality of the resulting storage and the storage size. For example,

1.1. Automatic Storage Optimization 3

i

t

i=0 i=M-1

0

M-1

Figure 1.1: Storage requirement for the outlined tile (of size T) can be reduced to 2T−1.

it can be the difference between say N 2, 2N , and N storage for what was originally an

N × N array. Earlier approaches [LF98, DSV05] had either worked with the canonical

(original) basis or assumed that the right directions would be provided by an oracle.

Our scheme computes a storage allocation suitable for a given multi-dimensional sched-

ule of the iterations. Typically, one determines a schedule based on criteria like locality,

parallelism and potentially, even memory footprint. It is thus natural and reasonable to

assume that the schedule has been fixed by the time storage contraction is ready to be per-

formed. Our approach finds directions that minimize the dimensionality of the contracted

storage. We introduce the notion of a storage partitioning hyperplane: such hyperplanes

define a partitioning of the iteration space such that each partition uses a single memory

location. Our approach is then of iteratively finding a minimum number of storage par-

titioning hyperplanes with certain criteria. The objectives ensure the right orientation of

the storage hyperplanes such that the dimensionality of the contracted array is as low as

possible, and for each of those dimensions, its extent is minimized.

4 1. Introduction

Consider the stencil computation with dependences (1,0), (0, 1) in Figure 1.1. It cor-

responds to the tiled version of the code in Figure 3.1. For a given tile, only its top and

right boundaries are live-out. As the primary objective behind tiling for locality is to ex-

ploit reuse in multiple directions while the data accessed fits in faster memory, live-out

sets along two or more boundaries are common with tiling. In Figure 1.1, for a schedule

that iterates row-wise within a tile, indexing the array along the canonical directions does

not reduce storage, i.e., if T is the tile size, T 2 storage per tile is needed. This solution

corresponds to the canonical storage hyperplanes (1, 0) and (0,1). The contraction fac-

tors obtained by Lefebvre and Feautrier [LF98] would just be N along each of the two

dimensions. None of the heuristics described in [DSV05, ABD07] find a different basis.

If the array is partitioned along the hyperplane (1,−1), i.e., if all points (t, i) in the ar-

ray such that t − i = constant reuse the same memory location, the tile can be executed

using a storage of just 2T − 1 cells. The storage buffer would finally hold the 2T − 1

live-out values. An access A[t, i] will be transformed to an access A[(t− i)mod (2T −1)],

and this is also the optimal solution. The occupancy vector based approach of Strout et

al. [SCFS98] does obtain this optimal storage, but it is designed for perfect loop nests with

constant dependences, and its schedule-independent nature leads to sub-optimal solutions

in general. The schedule-dependent approach we develop in this paper finds the optimal

storage mapping in this case automatically, and works for general affine loop nests. Other

dependence patterns or more complex tiling shapes can lead to non-trivial mappings that

are very difficult to derive by hand.

In addition to reuse opportunities across elements of a single array, there may also exist

some scope for storage reuse or across multiple arrays. Intra-array storage management

deals with how an array written to by a particular statement is compacted and accessed.

On the other hand, inter-array reuse analysis pertains to memory locations from different

arrays being written to in different high-level statements of a program. It might be possible

to reduce the number of arrays to minimize the amount of allocated storage. Consider a

high-level statement which writes to an array appearing within an arbitrarily nested loop.

Multiple dynamic instances of the statement (arising out of an outer surrounding loop) can

1.1. Automatic Storage Optimization 5

store values that they compute to the same memory location provided the lifetimes of these

values do not overlap. Besides general-purpose programming languages, storage optimiza-

tion assumes high importance in domain-specific languages where high-level constructs

provided to the programmer abstract away storage — providing the compiler with com-

plete freedom in allocating and managing storage [AMMB+09, Lab10, RKBA+13, MVB15].

1 for (t=1; t<=N; t++){
2 for (i=1; i<=N; i++)
3 P[i] = f(Q[i-1],Q[i],Q[i+1]);
4 for (i=1; i<=N; i++)
5 Q[i] = P[i];
6 }
7 for (i=1; i<=N; i++)
8 result += Q[i];

Figure 1.2: A stencil using a ping-pong buffer

Consider the code in Figure 1.2. It uses two buffers P and Q in a ping-pong fashion

so that the updated values are not immediately used in the same time (t) loop iteration.

Such a pattern is common to several Jacobi-style smoothing operations used in iterative

solution of partial differential equations, and in other stencil computations used in image

processing. It is not obvious whether the total storage requirement of 2N (N for each of

the two arrays) can be reduced any further, and developers of such code often assume

that two arrays are needed. State-of-the-art intra-array storage optimization techniques

and heuristics like that of Lefebvre and Feautrier [LF98], Darte et al. [DSV05] use mod-

ulo mappings to compact storage — the introduction of a modulo operator in the access

expression leads to reuse of memory within the same array. In this case, if one analyzes

intra-array lifetimes, no modulus smaller than N can be deduced. This effectively means

no storage can be compacted. On the other hand, inter-array reuse techniques that ana-

lyze and capture the interference of lifetimes of different arrays are again unable to reuse

storage between P and Q. This is because the lifetimes of both arrays are interleaved, and

techniques like those based on graph coloring [LF98] or that of De Greef et al. [GCM97b]

will be unable to reduce storage any further. Hence, no existing automatic intra-array or

inter-array storage optimization technique can further optimize memory for the code in

6 1. Introduction

1 for (t=1; t<=N; t++){
2 for (i=1; i<=N; i++)
3 A[(i-t+N)%(N+1)] = f(A[(i-t+N)%(N+1)],
4 A[(i-t+1+N)%(N+1)],A[(i-t+2+N)%(N+1)]);
5 for (i=1; i<=N; i++)
6 A[(i-t+N)%(N+1)] = A[(i-t+N)%(N+1)];
7 }
8 for (i=1; i<=N; i++)
9 result += A[i%(N+1)];

(a) Figure 1.2 with an optimized storage mapping
1 for (t=1; t<=N; t++)
2 for (i=1; i<=N; i++)
3 A[(i-t+N)%(N+1)] = f(A[(i-t+N)%(N+1)],
4 A[(i-t+1+N)%(N+1)],A[(i-t+2+N)%(N+1)]);
5 for (i=1; i<=N; i++)
6 result += A[i%(N+1)];

(b) After elimination of the dead code in Figure 1.3(a)

Figure 1.3: Storage optimization of ping-pong style 1-d stencil (from 2N to N+1)

Figure 1.2. However, a framework that takes an integrated and precise view of intra and

inter-array memory reuse can indeed reduce storage from 2N to N+1. A mapping that

enables this compaction is given by:

Pt[i] → A[(i− t+ N)%(N+ 1)]

Qt[i] → A[(i− t+ N)%(N+ 1)]

where Pt[i] and Q t[i] represent the values P[i] and Q[i] computed in iteration t of the

outermost loop. Such a mapping leads to the code shown in Figure 1.3(a) with storage

of just N+1 for array A. A surprising and positive side-effect of this mapping is that the

second statement is turned into dead code! A subsequent compiler pass can completely

eliminate the second statement (refer Figure 1.3(b)). This optimization opportunity is

non-trivial to infer from the original code. Such a mapping not only leads to smaller

storage, but also eliminates an unnecessary copy between the arrays while preserving

semantics. The approach we present in this work is able to determine such mappings

automatically. In the case of more realistic examples that employ 2-d or 3-d arrays, the

1.1. Automatic Storage Optimization 7

reduction is more prominent: from 2N 2 to N 2 + 2N for a code similar to Figure 1.2 that

uses 2-d arrays, and from 2N 3 to about N 3 + 2N 2 for one employing 3-d arrays. This

allows a programmer to effectively process larger problems given a fixed amount of main

memory available on a system, and use fewer physical nodes to solve a problem of a given

size.

Our integrated approach for intra-array as well as inter-array storage optimization fur-

ther builds on the notion of storage hyperplanes introduced earlier. Storage hyperplanes,

in the context of inter-array storage optimization, have a meaning not just within an array

but also across arrays. Often, programs intensive in data are written with arrays being

produced as outputs while being consumed subsequently. The full extent of storage opti-

mization can only be performed with a global view of conflicts. For example, the hyper-

plane that enables the storage optimization in Figure 1.3(a) is (i− t) = (−1, 1)· (t, i)T . Our

integrated approach to memory optimization subsumes previous intra-array optimization

approaches while allowing effective inter-array optimization. The framework is also more

powerful than an approach that decouples the two problems and solves them separately.

In essence, our contributions towards the problem of automatic storage optimization

for arrays can be summarized as follows.

• We describe a new technique for storage optimization while casting the latter as

an array space partitioning problem, where each partition uses a single memory

location. We then formulate an ILP problem solvable using a greedy heuristic whose

objective takes into account the dimensionality of the mapping as well as the extent

along each dimension.

• We further develop an integrated approach to intra-statement as well as inter-statement

storage optimization by generalizing the principle of storage partitioning for a uni-

fied global array space. We then present a greedy solution for finding statement-wise

storage hyperplanes. The greedy objective is not only based on the dimensionality

of the mapping and the extents along each dimension but also factors in the inter-

statement storage reuse considerations.

8 1. Introduction

• We implement and evaluate our technique on various domain-specific benchmarks

and demonstrate reductions in storage requirement ranging from a constant factor

to asymptotic in the extents of the original array dimensions or loop blocking factors.

Finally, the techniques that we propose for storage optimization in affine loop-nests, by

exploiting intra-array and inter-array reuse opportunities, have been built into SMO [SMO16],

an open source tool which was developed as part of this work.

1.2 Polyhedral Compilation of Dataflow Programs

As a somewhat related topic, we also study the problem of polyhedral compilation of

dataflow programs. Many computationally intensive scientific and engineering applica-

tions that employ stencil computations, linear algebra operations, image processing ker-

nels, etc. lend themselves to polyhedral compilation techniques [ASUL06, Bas]. Such

computations exhibit certain properties that can be exploited at compile time to perform

parallelization and data locality optimization.

Typically, the first stage of a polyhedral optimization framework consists of polyhedral

extraction. Specific regions of the program that can be represented using the polyhedral

model, typically affine loop nests, are analyzed. Such regions have been termed Static

Control Parts (SCoPs) in the literature. Results of the analysis include an abstract math-

ematical representation of each statement in the SCoP, in terms of its iteration domain,

schedule, and array accesses. Once dependences are analyzed, an automatic paralleliza-

tion and locality optimization tool such as Pluto [Plu] is used to perform high-level opti-

mizations. Finally, the transformed loop nests are synthesized using a loop generation tool

such as CLooG [Bas04].

Regardless of whether an input program is written in an imperative language, a dataflow

language, or using another paradigm, if a programmer does care about performance, it is

important for the compiler not to ignore transformations that yield significant performance

gains on modern architectures. These transformations include, for example, ones that en-

hance locality by optimizing for cache hierarchies and exploiting register reuse or those

1.2. Polyhedral Compilation of Dataflow Programs 9

that lead to effective coarse-grained parallelization on multiple cores. It is thus highly

desirable to have techniques and abstractions that could bring the benefit of such trans-

formations to all programming paradigms.

There are many compilers, both proprietary and open-source that now use the poly-

hedral compiler framework [GZA+11, MVW+11, BGDR10, Plu]. Research in this area,

however, has predominantly focused on imperative languages such as C, C++, and For-

tran. These tools rely on the fact that the code can be viewed as a sequence of statements

executed one after the other. In contrast, a graphical dataflow program consists of an

interconnected set of nodes that represent specific computations with data flowing along

edges that connect the nodes, from one to another. There is no notion of a statement or

a mutable storage allocation in such programs. Conceptually, the computation nodes can

be viewed as consuming data flowing in to produce output data. Nodes become ready to

be ‘fired’ as soon as data is available at all their inputs. The programs are thus inherently

parallel. Furthermore, the transparency with respect to memory referencing allows such a

program to write every output data value produced to a new memory location. Typically,

however, copy avoidance strategies are employed to ensure that the output data is inplace

to input data wherever possible. Such inplaceness decisions can in turn affect the execution

schedule of the nodes.

The polyhedral extraction and code synthesis for dataflow programs, therefore, in-

volves a different set of challenges to those for programs in an imperative language such as

C. In this work, we propose techniques that address these issues. Furthermore, to demon-

strate their practical relevance, we describe an automatic loop transformation framework

that we built for the LabVIEW graphical dataflow programming language, which uses all

of these techniques. Our contributions regarding the polyhedral compilation of graphical

dataflow programs are as follows.

• We provide a specification of parts of a dataflow program that lends itself to the

abstract mathematical representation of the polyhedral model.

• We describe a general approach for extracting the polyhedral representation for such

a dataflow program part and also for the inverse process of code synthesis.

10 1. Introduction

• We present an experimental evaluation of our techniques for LabVIEW and compar-

ison with the LabVIEW production compiler.

Chapter 2 provides the necessary background on the polyhedral model, the succes-

sive modulo technique of Lefebvre and Feautrier [LF98], a brief introduction to dataflow

languages (LabVIEW, in particular) and introduces the notation used later. Chapters 3

and 4 present the details of our storage optimization scheme for exploiting intra-array and

inter-array reuse respectively, along with related work and various examples drawn from

real-world applications. Chapter 5 reports results obtained using an implementation of our

automatic array optimization techniques. Most of the content in these three chapters has

been published in [BBC16a] and [BBC16b]. Chapter 6 is based on our work published

in [BB13]. It describes PolyGLoT, an auto-transformation framework for the LabVIEW

graphical dataflow programming languages, and also provides a detailed discussion of the

techniques that we developed to build this framework. An experimental evaluation of the

same is reported in Section 6.4. Finally, our conclusions are presented in chapter 7.

CHAPTER 2

BACKGROUND

This chapter provides the background and notation required for the techniques that we de-

scribe in the later chapters for storage optimization and polyhedral compilation of dataflow

programs.

2.1 Affine Hyperplane

Definition 1. The set of all vectors ~v ∈ Zn such that ~h.~v = k constitute an affine hyperplane.

Different constant values for k generate different parallel instances of the hyperplane

which is usually characterized by the vector, ~h, normal to it.

2.2 Polyhedral Model

2.2.1 Overview of the Polyhedral Model

The polyhedral model provides an abstract mathematical model to reason about program

transformations. Consider a program part that is a sequence of statements with zero

or more loops surrounding each statement. The loops may be imperfectly nested. The

11

12 2. Background

1 for (i=1; i<=n; i++)
2 for (j=1; j<=n; j++)
3 if (i <= n-j+2)
4 S1;

+2n

+2n

1

1 2

2

n

n

i

j
i<=n

j>=1

j<=n

i>=1

i<=n−j+2

Iteration domain of S1























1 0

−1 0

0 1

0 −1

−1 −1





























i

j






≥























1

−n

1

−n

−n− 2























Iteration domain of S1

Figure 2.1: Polyhedral representation of a loop nest in geometric and linear algebraic form

1 for (i=1; i<=n-1; i++)
2 for (j=i+1; j<=n; j++)
3 /*S1*/ c[i][j] = a[j][i] / a[i][i];
4 for (j=i+1; j<=n; j++)
5 for (k=i+1; k<=n; k++)
6 /*S2*/ a[j][k] -= c[i][j] * a[i][k];

(a) Original code

θS1

�

i, j
�

= (i, 0, j, 0)

θS2

�

i, j, k
�

= (i, 1, j, k)

(b) Initial schedule

θS1

�

i, j
�

= (i+ j, j, 0)

θS2

�

i, j, k
�

= (i+ j, j, 1, k)

(c) New schedule

1 for (t1=3; t1<=2*n-1; t1++)
2 for (t2=ceild(t1+1,2); t2<=min(n,t1-1); t2++)
3 c[t1-t2][t2] = a[t2][t1-t2] / a[t1-t2][t1-t2];
4 for (t3=t1-t2+1; t3<=n; t3++)
5 a[t2][t3] -= c[t1-t2][t2] * a[t1-t2][t3];

(d) Transformed code

Figure 2.2: Example of input code, the corresponding original schedule, a new schedule

and transformed code.

dynamic instances of a statement S, are represented by the integer points of a polyhedron

whose dimensions correspond to the enclosing loops. The set of dynamic instances of a

statement is called its iteration domain, D. It is represented by the polyhedron, defined

by a conjunction of affine inequalities that involve the enclosing loop iterators and global

parameters. Each dynamic instance is uniquely identified by its iteration vector, i.e., the

vector ~iS of enclosing loop iterator values. Figure 2.1 shows the polyhedral representation

of a loop nest in its geometric and linear algebraic form.

Schedules. Each statement, or more precisely its domain, has an associated schedule,

which is a multi-dimensional affine function mapping each integer point in the statement’s

domain to a unique time point that determines when it is to be executed. Code generated

from the polyhedral representation scans integer points corresponding to all statements

2.3. Farkas’ Lemma 13

globally in the lexicographic order of the time points they are mapped to. For example,

θS(i, j, k) = (i + j, j, k) is a schedule for a 3-d loop nest with original loop indices i, j, k.

Changing the schedule to (i + j, k, j) would interchange the two inner loops. Figure 2.2

shows a code, its schedule as extracted from the input program, a new schedule and

code generated with the new schedule. The new schedule fuses the j loops of both the

statements while skewing the outermost loop with respect to the second outermost one.

The reader is referred to [Bas] for more details on the polyhedral representation.

The initial schedule that is extracted, corresponding to the original execution order, is

referred to as an identity schedule, i.e., if it is not modified, code generation will lead to the

same code as the one from which the representation was extracted. A dimension of the

multi-dimensional affine scheduling function is called a scalar dimension if it is a constant.

In Figure 2.2(b), the second dimension of both statements’ schedules are scalar dimen-

sions. In the schedules listed in Figure 2.2(c), the third dimension is a scalar one. Poly-

hedral optimizers have models to pick a suitable schedule among valid ones. A commonly

used model that minimizes dependence distances in the transformed space [BBK+08],

thereby optimizing locality and parallelism simultaneously, is implemented in Pluto [Plu].

2.3 Farkas’ Lemma

Several polyhedral techniques rely on the application of the affine form of the Farkas’

lemma [Sch86, Fea92a].

Lemma 1. Let D be a non-empty polyhedron defined by s affine inequalities or faces: ~ak.~x +

bk ≥ 0, 1≤ k ≤ s. An affine formψ(~x) is non-negative everywhere in D iff it is a non-negative

combination of the faces, i.e.,

ψ(~x) = λ0+Σ
(k=s)
(k=1)λk

�

~ak.~x + bk
�

,λk ≥ 0. (2.1)

The λks are known as Farkas multipliers.

14 2. Background

2.4 Successive Modulo Technique

Lefebvre and Feautrier [LF98] proposed a storage optimization technique which they re-

ferred to as partial data expansion. A given static control program is subjected to array

dataflow analysis and then converted into functionally equivalent single-assignment code

so that all the artificial dependences (output and anti) are eliminated. The translation to

single-assignment code involves rewriting the program so that each statement S writes to

its own distinct array space AS, which has the same size and shape as that of the iteration

domain of S. Without any loss of generality, if we assume that the loop indices are non-

negative, then ~iS writes to AS[~i]. This process of expanding the array space is known as

total data expansion. A schedule θ is then determined for the single-assignment code.

In order to alleviate the considerable memory overhead incurred due to such total

expansion, the array space is then contracted along the axes represented by the loop it-

erators. This partial expansion technique is based on the notion of the utility span of a

value computed by a statement instance ~iS at time θ(~iS) to a memory cell C . It is defined

to be the sub-segment of the schedule during which the memory cell C is live, i.e., the

value stored at C still has a pending use. Suppose that the last pending use of the value

in C occurs in iteration L(~iS), at logical time θ(L(~iS)). Any new output dependence that

does not conflict with the flow dependence between~iS and L(~iS) corresponding to the time

interval [θ(~iS),θ(L(~iS))], is an output dependence that can be safely introduced.

Definition 2. Two array indices ~i,~j such that ~i 6= ~j conflict with each other and the con-

flict relation ~i ./ ~j is said to hold iff θ(~iS) � θ(L(~jS)) and θ(~jS) � θ(L(~iS)) i.e., iff the

corresponding array elements are simultaneously live under the given schedule θ .

The conflict set CS is the set of all pairs of conflicting indices. It can be specified as

CS = {(~i,~j) | ~i ./ ~j}. In accordance with the above definition, the conflict relation ./ is

symmetric and non-reflexive. Partial expansion is performed iteratively with each state-

ment being considered once at every depth of the surrounding loop nest. The contraction

modulo ep (or expansion degree as Lefebvre and Feautrier [LF98] refer to it), along the

axis of the array space which corresponds to the loop at depth p, is computed as follows.

2.5. Rectangular Hull for Inter-Array Reuse 15

Suppose DS is the set of differences of indices which conflict, i.e., DS = {~i − ~j | ~i ./ ~j}.

Similarly, let DSp = {~i −~j |~i ./ ~j ∧~i � ~j ∧ (ix = jx∀x < p)}. If ~b is the lexicographic maxi-

mum of DSp, the contraction modulo is given by ep = bp+1, where bpûp is the component

of ~b along the axis ip, with ûp representing the unit vector along the same axis. In essence,

the contraction modulo ep represents the degree of contraction along that axis. The final

storage mapping is obtained by converting it into a modulo mapping so that the statement

instance ~iS writes to AS[~i mod ~e], where ~e = (e0, e1, . . . , en−1). This method to determine

the contraction moduli will hereafter be referred to as the successive modulo technique.

2.5 Rectangular Hull for Inter-Array Reuse

Lefebvre and Feautrier [LF98] also propose a graph coloring based approach for inter-

array reuse. In this approach, an interference graph is constructed where each node rep-

resents a statement. An edge between two nodes corresponding to the statements Si and

S j implies that the two statements cannot write to the same data structure — the pre-

scribed shared data structure is nothing but the rectangular hull of the arrays ASi
and AS j

contracted in accordance with the successive modulo technique. Such inter-array reuse

is possible only if a value computed by the statement Si is not overwritten prematurely,

before its last use, by an execution instance of the statement S j and vice versa. A greedy

coloring algorithm can then be applied on such an interference graph to determine the

statements that can write to such a shared data structure. Hereafter, we refer to this

technique as the rectangular hull method.

2.6 LabVIEW – Language and Compiler

LabVIEW is a graphical, dataflow programming language from National Instruments Cor-

poration (NI) that is used by scientists and engineers around the world. Typically, it is

used for implementing control and measurement systems, and embedded applications.

16 2. Background

Figure 2.3: matmul in LabVIEW

The language itself, due to its graphical nature, is referred to as the G language. A Lab-

VIEW program called a Virtual Instrument (VI) consists of a front panel (the graphical

user interface) and a block diagram, which is the graphical dataflow diagram. Instead of

textual statements, the program consists of specific computation nodes. The flow of data

is represented by a wire that links the specific output on a source node to the specific input

on a sink node.

The block diagram of a LabVIEW VI for matrix multiplication is shown in Figure 2.3.

LabVIEW for-loops are unit-stride for-loops with zero-based indexing. A loop iterator node

in the loop body (the [i] node) produces the index value in any iteration. A special node

on the loop boundary (the N node) receives the upper loop bound value. The input arrays

are provided by the nodes a, b and c. The output array is obtained at the node named

c − out. The color of the wire indicates the type of data flowing along it e.g. blue for

integers, orange for floats. Double lines are indicative of arrays.

Loop nodes act as special nodes that enclose the dataflow computation that is to be

2.7. An Abstract Model of Dataflow Programs 17

executed in a loop. Data that is only read inside the loop flows through a special node

on the boundary of the loop structure called the input tunnel. A pair of boundary nodes

called the left and right shift registers are used to represent loop-carried dependence. Data

flowing into the right shift register in one iteration flows out of the left shift register in the

subsequent iteration. The data produced as a result of the entire loop computation flows

out of the right shift register. Additionally, some boundary nodes are also used for the loop

control. In addition to being inherently parallel because of the dataflow programming

paradigm, LabVIEW also has a parallel for loop construct that can be used to parallelize

the iterative computation [BDYF10].

The LabVIEW compiler first translates the G program into a Data Flow Intermediate

Representation (DFIR) [Lab10]. It is a high-level, hierarchical and graph-based represen-

tation that closely corresponds to the G code. Likewise, we model the dataflow program as

being conceptually organized in a hierarchy of diagrams. It is assumed that the diagrams

are free of dead-code.

2.7 An Abstract Model of Dataflow Programs

Suppose N is the set of computation nodes and W is the set of wires in a particular diagram.

Each diagram is associated with a directed acyclic graph (DAG), G = (V, E), where V =

N ∪W and E = EN ∪ EW . EN ⊆ N ×W and EW ⊆ W × N . Essentially, EN is the set of

edges that connect the output of the computation nodes to the wires that will carry the

output data. Likewise, EW is the set of edges that connect the input of computation nodes

to the wires that propagate the input data. We follow the convention of using small letters

v and w to denote computation nodes and wires respectively. Any edge (v, w) represents a

particular output of node v and any edge (w, v) represents a particular input of node v. So,

the edges correspond to memory locations. The wires serve as copy nodes, if necessary.

Figure 2.4 shows the DAG in the block diagram of the LabVIEW matrix multiplication

program. In this abstract model, the gray nodes are wires. The 4 source nodes (N, a, b, c),

the sink node (c-out) and the outermost loop are represented as the 6 blue nodes. Directed

18 2. Background

edges represent the connections from inputs/outputs of computation nodes to the wires,

e.g. data from source node N flows over a wire into two inputs of the loop node. Hence

the two directed edges from the corresponding wire node.

N

a

b

c

l1

c-out

Figure 2.4: DAG of the top-level diagram of matmul.

For every n ∈ N that is a loop node, it is associated with a DAG, Gn = (Vn, En) which

corresponds to the dataflow graph describing the loop body. The loop inputs and outputs

are represented as source and sink vertices. The former have no incoming edges, whereas

the latter have no outgoing edges. Let I and O be the set of inputs and outputs. Further-

more, a loop output vertex may be paired with a loop input vertex to signify a loop-carried

data dependence i.e., data produced at the loop output in one iteration flows out of the

input for the next iteration (Fig 2.3).

Loop Inputs and Outputs. Data flowing into and out of a loop is classified as either

loop-invariant input data or loop-carried data. Loop-invariant input data is that which is

only read in every iteration of the loop. Let Inv be the set of loop-invariant data inputs

to the loop. The LabVIEW equivalent for such an input is an input tunnel. In Figure 2.3,

for the outermost loop l1, Inv = {w, x , y}. Loop-carried data is that which is part of a

loop-carried dependence inducing dataflow. The paired loop inputs and outputs represent

such a dependence. Let ICar, OCar be sets of these loop inputs and outputs. The loop-

carried dependence is represented by the one-to-one mapping lcd : OCar → ICar. The

LabVIEW equivalent for such a pair are the left and right shift registers. In Figure 2.3, for

loop l1, ICar = {z}, OCar = {z′}, (z, z′) ∈ lcd.

2.7. An Abstract Model of Dataflow Programs 19

2.7.1 Inplaceness

In accordance with the referential transparency of a dataflow program, each edge could

correspond to a new memory location. Typically, however, a copy-avoidance strategy may

be used to reuse memory locations. For example, consider the array element write node u

in Figure 2.3, and its input and output wires, w1 and w2. The output array data flowing

along w2 could be stored in the same memory location as the input array data flowing

along w1. The output data can be inplace to the input data. The can-inplace relation

(w1, u) (u, w2) is said to hold.

In general, for any two edges (x , y) and (y, z), (x , y) (y, z) holds iff the data inputs

or outputs that these edges correspond to can share the same memory location (regardless

of whether a specific copy-avoidance strategy chooses to reuse the memory location or

not). The can-inplace relation is an equivalence relation. A path {x1, x2, . . . , xn} in a graph

G = (V, E), such that (x i−1, x i) (x i, x i+1) for all 2 ≤ i ≤ n− 1, is said to be a can-inplace

path. Note that by definition, the can-inplace relation (w1, v) (v, w2) implies that the

node v can overwrite the data flowing over w1. In such a case, we say that the relation

v × w1 holds. However, the can-inplace relation (v1, w) (w, v2) does not necessarily

imply such a destructive operation as the purpose of a wire is to propagate data, not to

modify it.

Suppose<s is a binary relation on V which specifies a total ordering of the computation

nodes. The relation <s specifies a valid execution schedule iff (v1 <s v2) implies that there

does not exist a directed path in graph G, from v2 to v1 for any v1, v2 ∈ V i.e., the schedule

respects all dataflow dependences. As we shall see later, the problem of scheduling the

computation nodes is closely related to inplaceness. Memory reuse due to copy-avoidance

can create additional dependences. A conjunction of scheduling relations
∧

(v1 <s v2) is

said to be consistent with a conjunction of can-inplace relations
∧

((x , y) (y, z)), for

x , y, z ∈ N ∪ V , iff such a schedule does not violate the dependences imposed by such an

inplaceness choice.

20 2. Background

Array Accesses. In Figure 2.3, the array read access is a node that takes in an array

and the access index values to produce the indexed array element value. The array write

access, takes the same set of inputs and the value to be written to produce an array with

the indexed element overwritten. We model the array read and write accesses similarly.

Notice that the output array of an array write, v, need not be inplace to the input array

flowing through a wire w1. If it is, then the array write performs a destructive update and

we represent that using the relation v×w1.

CHAPTER 3

INTRA-ARRAY STORAGE OPTIMIZATION

In this chapter, we present all the details of our storage partitioning approach for achieving

intra-array storage optimization.

3.1 A Simple Example

The successive modulo technique, described in Section 2.4, is quite versatile, scalable

and also parametric. However, the eventual modulo storage mapping obtained does not

always lead to minimal storage requirements. Consider the static control loop nests in

Figure 3.1(a). The producer loop nest is already in single-assignment form where each

statement instance S(t, i) writes to its own distinct memory cell A[t, i] so that the array

space A has the same size and shape as the iteration domain of statement S. Suppose the

schedule determined is θ(t, i) = (t, i). There are some values computed by statement S

which are live even after all its instances have been executed. These live-out values reside

in the set of memory cells, {(t, i) | (t, i) ∈ A∧ (i = N)∨ (t = N)}. As a result, the conflict

set CS is made up of conflicts not only due to the uniform lifetimes of the non-live-out

values but also due to the non-uniform lifetimes of the live-out values. Specifically, the

21

22 3. Intra-Array Storage Optimization

1 // the producer loop
2 for (t=1; t<=N; i++)
3 for (i=1; i<=N; i++)
4 /*S*/ A[t,i] = A[t,i-1] + A[t-1,i];
5

6 // the consumer loop
7 for (i=1; i<=N; i++)
8 result = result + A[i,N] + A[N,i];

(a) Iteration domain of S is shown in

Figure 3.1(b).
i

t

i=1 i=N

t=1

t=N

(b) The maroon arrows denote flow

dependences. Live-out portion is in yellow.

CS =
��

t = t ′
�

∧
�

i′ ≥ i+ 1
�

∧ (t, i) ,
�

t ′, i′
�

∈ DS
�

∨
��

t + 1= t ′
�

∧
�

i′ ≤ i− 1
�

∧ (t, i) ,
�

t ′, i′
�

∈ DS
�

∨
��

t ′ ≥ t + 1
�

∧ (i = N)∧ (t, i) ,
�

t ′, i′
�

∈ DS
�

.

(c) Conflict set specification

(t ′, i′)

i

t

i=1 i=N

t=1

t=N

(d) A geometrical representation of

conflicts

Figure 3.1: The geometrical representation in Figure 3.1(d) shows the array space A writ-

ten to by statement S in the code snippet shown in Figure 3.1(a). The red double-headed

arrows in Figure 3.1(d) denote the various conflicts associated with the array index (t ′, i′).

array index associated with a live-out value conflicts with the array index associated with

any value computed later in the schedule. So, the resulting conflict set CS, of pairs of

conflicting indices (t, i) ./ (t ′, i′), is a union of convex polyhedra characterized by the

constraints shown in Figure 3.1(c).

The conflict relation is, strictly speaking, symmetric. For brevity, the constraints in

3.1. A Simple Example 23

Figure 3.1(c) represent a conflict between a pair of conflicting indices only once, effectively

treating it as an unordered pair. The first two disjuncts in Figure 3.1(c) together represent

conflicts due to the flow dependence (1,0), which is also the maximum utility span of

any non-live-out value (refer Figure 3.1(b)). The last disjunct expresses the conflicts due

to the live-out values. The geometrical representation in Figure 3.1(d) shows the array

space A written to by statement S in the code snippet shown in Figure 3.1(a). The red

double-headed arrows in Figure 3.1(d) denote the various conflicts associated with the

array index (t ′, i′). Please note that often, the last read of the value computed by one

statement instance and the write by another instance of the same statement occur at the

same logical time. Hereafter, in such scenarios, we do not treat the associated indices as

conflicting since they can be mapped to the same memory cell e.g. in Figure 3.1(c), (t ′, i′)

and (t ′+ 1, i′) do not conflict.

Applying the successive modulo technique, at loop-depth p = 0, the contraction mod-

ulo obtained is e0 = N due to the conflict (1, N) ./ (N , N). Similarly, the contraction

modulo at loop-depth p = 1 is e1 = N due to the conflict (N , 1) ./ (N , N). The resulting

modulo storage mapping of A[t, i]→ A[t mod N , i mod N] requires N 2 storage.

A careful analysis reveals that a better storage mapping for the above example would be

A[t, i]→ A[(i− t)mod (2N−1)]. This mapping not only ensures that all the intermediate

values computed are available until their last uses but also that the live-out values are

available even after the producer loop has terminated. Furthermore, it drastically reduces

the storage requirement from O(N 2) to O(N), requiring just a single row of 2N − 1 cells.

The above example shows that a straightforward computation of the contraction moduli

along the canonical bases can lead to a solution which can be considerably worse than the

optimal solution. As will be explained in the following sections, a better approach is to

find hyperplanes which partition the array space based on the conflict set and to then use

the hyperplane normals as the bases for computing the contraction moduli.

24 3. Intra-Array Storage Optimization

3.2 Storage Hyperplanes and Conflict Satisfaction

We formalize here the notion of a storage partitioning hyperplane (or storage hyperplane)

satisfying a conflict ~i ./ ~j in the conflict set CS.

Definition 3. A conflict between a pair of array indices ~i and ~j is said to be satisfied by a

hyperplane ~Γ iff ~Γ.~i− ~Γ.~j 6= 0.

Essentially, if the hyperplane is thought of as partitioning the array space, a conflict is

satisfied only if the array indices involved are mapped to different partitions.

The successive modulo technique can also be understood through this notion of conflict

satisfaction. Consider again loop nest in Figure 3.1. As explained earlier, the contraction

modulo e0 = N is due to the conflict (1, N) ./ (N , N). This is equivalent to the hyper-

plane (1, 0) partitioning the array space into N partitions. Clearly, the conflicting indices

(1, N) and (N , N) are mapped to different partitions, thus satisfying the conflict. The hy-

perplane (1, 0) satisfies all the conflicts represented by the second and third disjuncts in

Figure 3.1(c). The conflicts specified by the first disjunct are not satisfied as the conflict-

ing indices get mapped to the same partition. However, these conflicts are satisfied at

loop-depth p = 1. This can be seen as the hyperplane (0,1) further partitioning each of

the N partitions obtained earlier into N distinct sub-partitions. As a result, the conflicting

indices in the conflicts that were not satisfied at the previous level get mapped to different

partitions. In essence, the successive modulo approach can also be understood as conflict

satisfaction being performed by successively partitioning the array space using a series of

storage hyperplanes.

The dimensionality of the array space is a loose upper bound on the number of storage

hyperplanes required to satisfy all the conflicts. This is because, in the trivial case, the

hyperplanes could simply correspond to those which have the canonical axes as their nor-

mals. In fact, this is exactly how the modulo storage mapping is determined in the succes-

sive modulo technique. In Figure 3.1, all the conflicts were satisfied using the two canon-

ical hyperplanes, (1,0), (0,1). However, the mapping A[t, i]→ A[(i − t)mod (2N − 1)],

which is better than the resulting solution not only in terms of the storage size required but

3.3. A Partitioning Approach 25

also in terms of its dimensionality, shows that it is possible to satisfy all the conflicts in the

conflict set (Figure 3.1(c)) using just one storage hyperplane. Generally, the choice of par-

titioning hyperplanes affects both the dimensionality as well as the storage requirements

of the resulting modulo storage mapping.

3.3 A Partitioning Approach

The problem of intra-array storage optimization for a given statement S with an n dimen-

sional iteration domain D, writing to an array space A (of the same size and shape as D

due to total data expansion), can be seen as a problem of finding a set of m partitioning

hyperplanes ~Γ1,~Γ2, . . . ,~Γm, which together satisfy all conflicts in the conflict set CS i.e.,

every conflict must be satisfied by at least one of the m hyperplanes. The resulting m-

dimensional modulo storage mapping would be of the form A[~i] → A[M~i mod ~e] where

M is the m× n transformation matrix constructed using the m storage hyperplanes as the

m rows of the matrix. If a hyperplane is Γi = (γi,1,γi,2, . . . ,γi,n), then the storage mapping

matrix M is an m× n matrix with the i th row
�

γi,1 γi,2 . . . γi,n

�

.

M =

















γ1,1 γ1,2 . . γ1,n

γ2,1 γ2,2 . . γ2,n

.

γm,1 γm,2 . . γm,n

















The contraction moduli computed along the normals of the m hyperplanes form the m

components of the vector ~e.

3.3.1 Conflict Set Specification

The conflict set can be specified as a union of convex polyhedra, also called conflict poly-

hedra, e.g., the disjunction in Figure 3.1(c). Each integer point in a conflict polyhedron

represents a particular conflict. The symmetric property of the conflict relation can be

26 3. Intra-Array Storage Optimization

used to simplify the conflict set significantly. Consider a 1-d array space A where all ar-

ray indices conflict with all other indices. The conflict set CS is then the set of ordered

pairs (i, i′) such that i ./ i′ holds. A conflict relation 1 ./ 2 can be encoded as the integer

point (1,2) in the conflict polyhedron {i < i′ | i, i′ ∈ A}. Strictly speaking though, if all

conflict relations are to be represented, due to the symmetry, another conflict polyhedron

{i > i′ | i, i′ ∈ A} would be required to accommodate the conflict relation 2 ./ 1. However,

satisfying the conflict 1 ./ 2 implies that 2 ./ 1 is also satisfied as both of them represent

the same pair of indices. The second conflict polyhedron is, in effect, redundant in the

conflict set. Hereafter, we assume that if a conflict relation ~i ./ ~j is represented in a con-

flict set CS, then CS does not contain a redundant representation of the relation ~j ./ ~i as

well. There may be multiple ways to specify a conflict set as a union of conflict polyhedra.

Therefore, we adhere to the convention that if the conflict relation ~i ./ ~j is represented in

the conflict set, the value for the conflicting index ~j must not be computed earlier than that

for the index ~i according to the given schedule. Furthermore, the conflict set specification

is minimal in the sense that no two conflict polyhedra exist in the union such that their

union is itself convex.

3.4 Finding a Storage Hyperplane

In the scenario when the conflict set is empty to begin with, the optimal allocation is

to contract the array down to a single scalar variable. Storage hyperplanes only need

to be found when the conflict set is non-empty. Suppose there are l conflict polyhedra

K1, K2, . . . , Kl so that the conflict set CS = ∪i=l
i=1Ki. Consider a pair of conflicting indices ~s

and ~t. By Definition 3, a hyperplane ~Γ satisfies this conflict if (~Γ.~s− ~Γ.~t) 6= 0. This can be

expressed by the disjunction:

�

~Γ.~s− ~Γ.~t
�

≥ 1 ∨
�

~Γ.~s− ~Γ.~t
�

≤−1.

Furthermore, since the iteration space D (and consequently, the array space A) is bounded,

there must exist a finite upper bound of the form (~u.~P +w) on (~Γ.~s− ~Γ.~t), where ~P is the

3.4. Finding a Storage Hyperplane 27

vector of program parameters. Such a bound has been used in [Fea92a] and in [BBK+08],

although in different contexts. Additionally, as the conflict relation is symmetric, the upper

bound is applicable to the absolute value of the conflict difference (~Γ.~s − ~Γ.~t). So, the

bounding constraints can be expressed as follows:

−
�

~u.~P +w
�

≤
�

~Γ.~s− ~Γ.~t
�

≤
�

~u.~P +w
�

. (3.1)

3.4.1 Encoding Satisfaction with Decision Variables

A storage hyperplane ~Γ may not necessarily satisfy all conflicts in the conflict set CS. It

may not even satisfy all the conflicts represented in a particular conflict polyhedron. So,

in general, (~Γ.~s− ~Γ.~t) could be positive, negative, or equal to zero. This nature of conflict

satisfaction can be captured adequately by introducing a pair of binary decision variables

x1i, x2i for each conflict polyhedron Ki such that:

x1i =







1 if
�

~Γ.~s− ~Γ.~t
�

≥ 1, ∀ ~s ./ ~t ∈ Ki,

0 if otherwise.

x2i =







1 if
�

~Γ.~s− ~Γ.~t
�

≤−1, ∀ ~s ./ ~t ∈ Ki,

0 if otherwise.

Note that the binary decision variables x1i, x2i indicate the nature of conflict satisfac-

tion at the granularity level of a conflict polyhedron and not at the granularity level of each

conflict. Even if there exists one conflict in the conflict polyhedron which is not satisfied

by the hyperplane, then the conflict polyhedron, as a whole, is still treated as unsatisfied.

So, the constraint that (~Γ.~s − ~Γ.~t) could be positive, negative, or equal to zero can be

expressed as the conjunction:

�

~Γ.~s− ~Γ.~t
�

≥ 1−
�

1− x1i
�

�

~u.~P +w+ 1
�

∧
�

~Γ.~s− ~Γ.~t
�

≤−1+
�

1− x2i
�

�

~u.~P +w+ 1
�

. (3.2)

28 3. Intra-Array Storage Optimization

By definition, x1i and x2i cannot be simultaneously equal to 1. Such a scenario would

mean that the constraints in the above conjunction would contradict each other. However,

if x1i = 1 and x2i = 0, then the first conjunct degenerates into the conflict satisfaction

constraint (~Γ.~s− ~Γ.~t)≥ 1 whereas the second conjunct is reduced to the constraint (~Γ.~s−

~Γ.~t) ≤ (~u.~P + w), which is implied by the bounding constraints (3.1). Similarly, if x2i = 1

and x1i = 0, the first conjunct becomes (~Γ.~s − ~Γ.~t) ≥ −(~u.~P + w) which is again implied

by the bounding constraints (3.1). The second conjunct degenerates into the conflict

satisfaction constraint (~Γ.~s − ~Γ.~t) ≤ −1. When there is still at least one conflict which

remains unsatisfied, both x1i and x2i must be equal to 0. In such a scenario, it can be

seen that neither of the two conjuncts degenerate into a conflict satisfaction constraint.

Instead, the entire conjunction boils down to the bounding constraints (3.1), which must

always hold, regardless of whether all or a few of the conflicts in the conflict polyhedron

are satisfied.

Each of the l conflict polyhedra is associated with its own pair of binary decision vari-

ables, both of which cannot simultaneously be equal to one. So, the number of conflict

polyhedra all of whose conflicts are satisfied by a hyperplane can be estimated as the sum

of all the decision variables:

η= Σi=l
i=1

�

x1i + x2i
�

. (3.3)

The number η forms the basis of our greedy heuristic for finding good storage hyper-

planes. Greater the value of η, fewer the number of conflict polyhedra whose conflicts still

remain unsatisfied. Consequently, it is likely that fewer storage hyperplanes will be needed

to satisfy the remaining conflicts. A particularly interesting case is when η can be made to

equal l. The storage hyperplane found then would have satisfied all conflicts on its own

without the need to find any more hyperplanes. In other words, maximizing η serves as a

reasonably good greedy approach for minimizing the number of storage hyperplanes and

thereby, the dimensionality of the final storage mapping.

3.4. Finding a Storage Hyperplane 29

3.4.2 Linearizing the Constraints

The storage hyperplane ~Γ should be such that the bounding constraints (3.1) hold at every

integer point ~v in a conflict polyhedron. Each conjunct in the bounding constraints can be

rewritten to be in the form ψ(~v)≥ 0 where ψ(~v) is affine. By the Farkas’ lemma (2.1), the

affine form can be equated to a non-negative linear combination of the faces of the conflict

polyhedron. The loop variables can then be eliminated by equating their respective coeffi-

cients to obtain an equivalent set of linear inequalities involving only the coefficients, some

of which are the Farkas’ multipliers. However, the same procedure cannot be repeated for

the decision constraints in (3.2) as neither of the two conjuncts can be rewritten in the

form ψ(~v) ≥ 0 (refer (2.1)). The coefficients of ~P in both conjuncts are products of a de-

cision variable and ~u’s coefficients, and similarly x1iw and x2iw are non-linear. Therefore,

the decision constraints in (3.2) cannot be linearized using the Farkas’ lemma.

However, since (~u.~P + w) is finite, there must exist a finite upper bound on it of the

form (c~P + c), i.e.,

�

~Γ.~s− ~Γ.~t
�

≤
�

~u.~P +w
�

≤
�

c~P + c
�

∧ −
�

~Γ.~s− ~Γ.~t
�

≤
�

~u.~P +w
�

≤
�

c~P + c
�

. (3.4)

In practice, a high value such as c = 10 (higher if no parameters exist and all loop bounds

are known at compile time) gives a reasonably good estimate of c, allowing c to be treated

as a suitably chosen constant value. Each individual constraint in (3.4) can be treated

using Farkas’ lemma to obtain a set of equivalent linear inequalities after eliminating the

loop variables. Due to transitivity, (c~P + c) is also an upper bound on | ~Γ.~s− ~Γ.~t |.

The decision constraints in (3.2) were formulated such that if either x1i or x2i is equal

to 1, then one of the conjuncts degenerates into a conflict satisfaction constraint while the

other into one of the bounding constraints in (3.1), which specify (~u.~P + w) as an upper

bound on | ~Γ.~s− ~Γ.~t |. Now, along similar lines, an alternative set of decision constraints

30 3. Intra-Array Storage Optimization

can be formulated as follows:

�

~Γ.~s− ~Γ.~t
�

≥ 1−
�

1− x1i
�

�

c~P + c+ 1
�

∧
�

~Γ.~s− ~Γ.~t
�

≤−1+
�

1− x2i
�

�

c~P + c+ 1
�

. (3.5)

The key is that c is a constant, and it now makes the conflict satisfaction constraints

amenable to linearization through application of Farkas’ lemma. Although the variables

~u and w still feature in the expanded set of bounding constraints in (3.4), the decision

constraints in (3.5) are now devoid of them. Note that c~P + c has been substituted for

~u~P+w in (3.2) alone to obtain (3.5). The difference between (3.2) and (3.5) is only with

respect to the upper and lower bounds that are imposed on (~Γ.~s − ~Γ.~t) when one of the

binary decision variables x1i, x2i is equal to 1 or when both are equal to 0. It still holds

that x1i and x2i cannot simultaneously be equal to 1. The bound c~P + c only has to be

sufficiently large to bound the conflict difference — it need not be tight and it does not

influence the objectives we will propose and the solutions obtained in any way.

3.4.3 A Greedy Double-Objective

The resulting ILP system consists of the constraints obtained due to the expanded set

of bounding constraints in (3.4), the revised decision constraints in (3.5) and also the

constraint on η given by (3.3). Such constraints are derived for each of the l conflict

polyhedra. The greedy approach is to determine a storage hyperplane ~Γ such that the

estimated number of conflict polyhedra η, all of whose conflicts are satisfied, is maximized.

This affects the dimensionality of the storage mapping which is eventually obtained.

Another factor that needs to be considered while determining the storage hyperplanes

is the storage size of the resulting modulo storage mapping. The storage size of a modulo

storage mapping determined using the successive modulo technique is computed as the

product of the contraction moduli. In the successive modulo technique, the contraction

moduli are computed along the canonical bases. Essentially, the canonical bases also serve

as the storage hyperplane normals. In general though, the storage hyperplane normals

3.5. Finding Storage Hyperplanes Iteratively 31

may not necessarily correspond to the canonical bases. However, the modulo can still be

computed based on the maximum conflict difference (~Γ.~s − ~Γ.~t), which is essentially the

maximum component of any conflict difference (~s−~t) along the normal of the hyperplane

~Γ. Since the contraction modulo is 1 plus the maximum conflict difference, the greater

the maximum conflict difference, the more storage size required for the resulting storage

mapping. Therefore, in order to minimize the storage size, another objective in solving

the ILP system is to minimize the maximum conflict difference (~Γ.~s− ~Γ.~t). As (~u.~P +w) is

an upper bound on (~Γ.~s− ~Γ.~t), this can be done by minimizing (~u.~P +w).

The number η is at most equal to l. If η′ = (l−η), the double-objective of maximizing

η and minimizing (~u.~P+w) can be achieved simultaneously by finding a lexicographically

minimal solution to the ILP system with η′, ~u and w in the leading position. If ~u =

(u1, u2, . . . , up), then the objective is as follows:

minimize≺
¦

η′, u1, u2, . . . , up, w
©

. (3.6)

The value determined for (~u.~P + w) using the above objective is the least upper bound

obtained for the maximum component of any conflict difference (~s− ~t) along the hyper-

plane normal. Consequently, the contraction modulo can be computed as being equal to

(~u.~P +w+ 1).

Conflict satisfaction is the primary issue involved in partitioning. So, the objective gives

minimization of η′ precedence over that of (~u.~P + w). As we shall see later, for scenarios

such as the one in Figure 3.1(a), this ensures that a hyperplane which satisfies all conflicts

at once is given precedence over a hyperplane which leaves some conflicts unsatisfied even

if the contraction modulo for the latter is smaller than that for the former.

3.5 Finding Storage Hyperplanes Iteratively

Once a storage hyperplane ~Γ has been found as described above, it is possible that there

still exist some conflicts which are not satisfied by it. Before the complete modulo storage

mapping can be obtained, additional hyperplanes need to be found such that, eventually,

32 3. Intra-Array Storage Optimization

each conflict is satisfied by at least one of the hyperplanes.

Suppose that the hyperplane ~Γ has been found based on the conflict set CS = K1 ∪

K2 ∪ · · · ∪ Kl . The conflicts ~s ./ ~t in the conflict set CS that are not satisfied by the storage

hyperplane ~Γ, satisfy the constraint (~Γ.~s − ~Γ.~t = 0). Therefore, in order to find the next

storage hyperplane, the conflict set should be revised to include only the unsatisfied con-

flicts. This can be done by adding the constraint (~Γ.~s − ~Γ.~t = 0) to each of the l conflict

polyhedra so that the new set of conflict polyhedra are:

K ′i = Ki ∩
¦

�

~s,~t
�

| ~Γ.~s− ~Γ.~t = 0
©

, 1≤ i ≤ l. (3.7)

Consequently, the resulting conflict set CS′ is given by:

CS′ = ∪i=l
i=1K ′i . (3.8)

In essence, instead of the original conflict set CS, the revised conflict set CS′ with

its constituent conflict polyhedra K ′1, K ′2, . . . , K ′l , forms the basis for determining the next

storage hyperplane. If all the conflicts in a conflict polyhedron Ki are satisfied by the

hyperplane ~Γ, its contribution to the revised conflict set CS′ due to the addition of the

constraint (~Γ.~s− ~Γ.~t = 0) would be nothing. Therefore, this iterative process of determin-

ing storage hyperplanes is continued until all conflicts are satisfied, i.e., until the conflict

set under consideration is empty. At each step, the contraction modulo is also found for

every storage hyperplane.

Algorithm 1 summarizes the partitioning-based approach to find a modulo storage

mapping. The main procedure, FIND-MODULO-MAPPING (line 1), determines the m storage

hyperplanes iteratively, revising the conflict set at each step as described above (lines 4-

7). The procedure, FIND-NEXT-HYPERPLANE (line 10), sets up the ILP system (lines 12-17)

necessary to determine the required storage hyperplane (line 18) and the corresponding

contraction modulo.

3.5. Finding Storage Hyperplanes Iteratively 33

Algorithm 1 Find a modulo storage mapping given a non-empty conflict set CS for the

array space A. ~P is the vector of program parameters.

1: procedure FIND-MODULO-MAPPING(A, CS, ~P)

2: CS′← CS

3: m← 0

4: while CS′ 6=∅ do

5: m← m+ 1

6: (Γm, em)← FIND-NEXT-HYPERPLANE(CS′)

7: Revise the conflict set (CS′) as shown in (4.11) by revising the conflict poly-

hedra as shown in (3.7)

8: Let M be the transformation matrix constructed with hyperplanes

Γ1,Γ2, . . . ,Γm forming its rows
9: Let ~e be the vector of contraction moduli e1, e2, . . . , em

return (M ,~e)

10: procedure FIND-NEXT-HYPERPLANE(CS′)

11: C ←∅

12: for all conflict polyhedra K ′i ∈ CS′ do

13: Formulate bounding constraints as shown in (3.4)

14: Formulate satisfaction decision constraints as shown in (3.5)

15: Apply Farkas’ lemma to each of the above constraints (formulated in steps 13

and 14) to obtain an equivalent set of linear equalities/inequalities
16: Add the linear inequalities/equalities to C

17: Add the constraint on η shown in (3.3) to C

18: Compute lexicographic minimal solution as shown in (3.6) to obtain the hyper-

plane Γ and the corresponding contraction modulo e

return (Γ, e)

34 3. Intra-Array Storage Optimization

(t ′, i′)

(-1,1)
i

t

i=1 i=N

t=1

t=N

Figure 3.2: Storage hyperplane (−1,1) satisfies all conflicts

3.5.1 Example Revisited

Consider again the producer-consumer loops that were introduced in Figure 3.1. In Fig-

ure 3.2, conflicts in different polyhedra are shown in different colors. Note that the canon-

ical hyperplanes (1,0) and (0,1) individually do not satisfy all conflicts — the former does

not satisfy the conflicts colored in red whereas the latter does not satisfy those shown

in blue. However, several other hyperplanes exist that satisfy all conflicts at once e.g.

(−1, 1), (−2,1), (−3,1) etc. Therefore, our greedy approach would pick such hyperplanes

over other candidate hyperplanes. Furthermore, the secondary objective is to minimize

the contraction modulo. Among such hyperplanes which satisfy all conflicts, (−1, 1) leads

to the smallest contraction modulo of 2N − 1. Since all conflicts are satisfied by the hy-

perplane (−1,1) itself, there is no need to find any more partitioning hyperplanes. The

resulting storage mapping, A[t, i]→ A[(i− t)mod (2N −1)], not only reduces the dimen-

sionality but also provides a storage size requirement that is asymptotically better than

that obtained using the successive modulo technique. This modulo storage mapping is

also dimension and storage optimal.

3.5.2 Correctness and Termination

While the primary objective is to maximize conflict satisfaction for the revised conflict set,

any hyperplane that is linearly dependent on the storage hyperplanes found in previous

3.6. Optimality 35

iterations will not satisfy any new conflict. In practice, we observed that finding the next

storage hyperplane using a revised conflict set is sufficient to ensure the required linearly

independence of hyperplanes. If, in addition to revising the conflict set, a theoretical

guarantee for such linear independence is sought, it can be enforced by introducing addi-

tional linear independence constraints, similar to those proposed in [BBK+08] for finding

scheduling hyperplanes iteratively. Since the number of linearly independent storage hy-

perplanes required for satisfying all conflicts is at most equal to the dimensionality of

the array space, the iterative process is guaranteed to terminate. A storage mapping that

satisfies all conflicts is a valid one by definition: it maps conflicting indices to different

partitions.

3.6 Optimality

The two-fold objective used makes our technique find good solutions that are often op-

timal. Note that all of the optimality discussion here is under the assumption that the

mappings considered are affine. The situations where sub-optimality could creep in are as

follows:

1. In some pathological cases, a higher-dimensional mapping is better than a lower

dimensional one, and this may not even be known at compile time. Consider a 2-d

wavefront in a 3-d iteration space with a storage mapping of size N1 × N2 versus a

lower dimensional one with storage N3. If N3 > N1 × N2, the higher-dimensional

mapping leads to lower storage.

2. Since decision variables for conflict satisfaction are added on a per conflict polyhe-

dron basis, splitting conflict polyhedra can only yield better solutions. This is also the

case when splitting dependences or iteration domains leads to better parallelization.

3. Our first objective of conflict set satisfaction is greedy in nature and although not

optimal, often finds optimal solutions in practice. The iterative approach to deter-

mine the partitioning hyperplanes (Section 3.5) is open to easy customization and

36 3. Intra-Array Storage Optimization

variation—for example to enumerate a fixed number of good solutions and pick the

minimum storage one among them, given that our storage mapping determination

is quite fast (Table 5.1).

Furthermore, if the primary objective of minimizing η′ in (3.6) results in it being equal

to 0, it means that the storage hyperplane thus found can satisfy all conflicts by itself. The

secondary objective ensures that the storage requirements of such a 1-dimensional modulo

storage mapping found will be optimal.

3.7 Examples

This section discusses storage mappings obtained by our intra-array storage optimization

technique on several example classes of affine loop nests.

3.7.1 Blur Filter - Interleaved Schedule

In image processing pipelines, such as Harris corner detectors [HS88] instead of time-

iterated stencils, a pipeline stage may apply a particular stencil once, before propagating

the computed output to the next stage, which then may apply a different stencil on its

input. The importance of storage optimizations in domain specific compilers for image

processing pipelines was studied by Ragan-Kelly et al. [RKBA+13] for their work on the

Halide DSL compiler. Consider the loop nest of a 2-stage blur in Figure 3.3(a). The

producer-consumer locality is quite poor. It can be improved by interleaving the horizon-

tal and vertical blurs as shown in Figure 3.3(b). The values that are live out for the loop

nest in Fig.3.3(b) are all stored in the array out whereas blur x only serves as an interme-

diate array necessary for computing the final live out values. As each statement instance

S(y, x) writes to blur x[y, x] in accordance with the schedule θ(S(y, x)) = (y, x , 0), the

last use of the value blur x[y, x] is in T (y + 2, x) at θ(T (y + 2, x)) = (y + 2, x , 1). The

conflict set CS of the conflicting indices (y, x) ./ (y ′, x ′) for the array space blur x due

to such a schedule is specified in Figure 3.4(a). The modulo storage mapping used by

3.7. Examples 37

1 // horizontal blur
2 for (x=0; x<=N-1; ++x)
3 for (y=0; y<=N-1; ++y)
4 blurx[x,y] = in[x,y] + in[x+1,y] + in[x+2,y];
5 // vertical blur
6 for (x=0; x<=N-1; ++x)
7 for (y=2; y<=N-1; ++y)
8 out[x,y] = blurx[x,y] + blurx[x,y-1] + blurx[x,y-2];

(a) 2-stage blur filter
1 for (y=0; y<=N-1; ++y)
2 for (x=0; x<=N-1; ++x) {
3 /*S*/ blurx[y,x] = in[x,y] + in[x+1,y] + in[x+2,y];
4 if(y>=2)
5 /*T*/ out[x,y] = blurx[y-2,x] + blurx[y-1,x] + blurx[y,x];
6 }

(b) Interleaved schedule

Figure 3.3: Different versions of 2-stage blur filter.

CS =
��

y, x
�

,
�

y ′, x ′
�

∈ blur x

∧
��

y ′− y ≤ 1∧ y ′− y ≥ 0∧ x < x ′
�

∨
�

y ′− y ≤ 2∧ y ′− y ≥ 1∧ x ≥ x ′
���

.

(a) Conflict set specification

x

y

y = 0

y = N-1

x = 0 x = N-1

(y, x)

(b) Note that (y, x) does not conflict with

the index (y + 2, x + 1)

Figure 3.4: Blur filter (interleaved schedule) – set of conflicts associated with index (y, x)

and their geometrical representation.

Ragan-Kelly et al. [RKBA+13] is same as that obtained using the successive modulo tech-

nique: blur x[y, x] → blur x[y mod 3, x mod N]. Figure 3.4(b) shows that the storage

hyperplane (−1, 2) would satisfy all the conflicts by itself. Furthermore, since it leads to

the smallest contraction modulus of 2N + 1, the modulo storage mapping obtained using

our technique is blur x[y, x]→ blur x[(−y + 2x)mod (2N + 1)].

38 3. Intra-Array Storage Optimization

1 #define in(x,y) in[tx*B+x,ty*B+y]
2 #define blurx(x,y) blurx[tx*B+x,ty*B+y]
3 #define out(x,y) out[tx*B+x,ty*B+y]
4

5 for (ty=0; ty<=(N-1)/B; ++ty)
6 for (tx=0; tx<=(N-1)/B; ++tx)
7 for (x=0; x<=B-1; ++x){
8 for (y=0; y<=B-1; ++y)
9 /*S0*/ blurx(x,y) = in(x,y) + in((x+1),y) + in((x+2),y);

10 for (y=0; y<=B-1; ++y)
11 if (ty*B+y >= 2)
12 /*S1*/ out(x,y) = blurx(x,y) + blurx(x,(y-1)) + blurx(x,(y-2));
13 }
14

15 // As P is enclosed by 4 loops, on total
16 // expansion of the arrays blurx and out,
17 // the write accesses become 4-d accesses
18 // #define blurx(x,y) ((y>=0) ? A0[ty,tx,x,y] : A0[ty-1,tx,x,B+y])
19 // #define out(x,y) A1[ty,tx,x,y]

Figure 3.5: Tiled execution of blur filter: t x and t y are the tile iterators whereas x and y

are the intra-tile iterators. B is the tile size.

3.7.2 Blur filter - Tiled Execution

Figure 3.5 shows a tiled version of the blur filter code introduced in Figure 3.3(a). The

schedules for the statements S0 and S1 can be expressed as θ(S0(t y, t x , x , y)) = (t y, t x , x , 0, y)

and θ(S1(t y, t x , x , y)) = (t y, t x , x , 1, y). The column-wise processing is interleaved to

further improve locality so that a column of blur x within the tile, once computed, is im-

mediately read for the vertical blur along the same column. The top two rows of each

data tile of blur x constitute its live-out data for such a schedule (refer 3.6(a)). Prior to

contraction, a total expansion of the array space written to by the statement S0 is per-

formed. This changes the write access to a 4-d access on an array space A0, which has

the same size and shape as the iteration domain of statement S0 (refer Figure 3.5)). Now,

consider the problem of contracting a data tile of the array space. The intra-tile conflict

set, shown in Figure 3.6(b), specifies all the conflicts associated with index (t y, t x , x , y)

within the same data tile. The first disjunct in the conflict set is for indices conflicting with

all other indices on the same column. The conflicts due to the live-out data values which

are already computed are specified by the other disjunct. The storage mapping obtained

using the successive modulo technique A0[t y, t x , x , y] → A0[t y, t x , x mod B, y mod B]

3.7. Examples 39

x

y

S0 S1

x=0 x=N-1

y=0

y=N-1

(a) Live-out data for the tile in yellow. The black and blue dots represent instances of the

statements S0 and S1 respectively.

CS =
��

x = x ′
�

∧
�

y ′ > y
�

∧
�

t y, t x , x , y
�

,
�

t y, t x , x ′, y ′
�

∈ A0

�

∨
��

x ′ > x
�

∧
�

y ≤ B− 1
�

∧
�

y ≥ B− 2
�

∧
�

t y, t x , x , y
�

,
�

t y, t x , x ′, y ′
�

∈ A0

�

.

(b) Conflict set specification.

x

y

(t x , t y, x , y)
y = 0

y = B-1

x = 0 x = B-1

(c) A geometric representation of conflicts.

Figure 3.6: Blur filter (tiled execution) – conflict sets and their geometrical representation.

40 3. Intra-Array Storage Optimization

does not contract the tile at all. However, note that the hyperplane (−2, 1) satisfies

all the conflicts with the contraction modulus (3B − 2). Our technique would arrive

at this storage hyperplane to give the dimension and storage optimal storage mapping

A0[t y, t x , x , y]→ A0[t y, t x , (y − 2x)mod (3B − 2)]. The storage required for the tile is

thus reduced from B2 down to (3B−2). Also, the same storage mapping holds even if tiles

along the same row are executed in parallel.

3.7.3 Lattice-Boltzmann Method (LBM)

We studied a discrete form of the Boltzmann equation [Suc01, PAVB15], used in compu-

tational fluid dynamics to model complex fluid flows. An LBM kernel is characterized as

DmQn where m is the dimensionality of the space lattice and n is the number of particle

distribution equations that need to be solved. Figure 3.7(a) shows a D2Q9 lattice arrange-

ment. Each blue box encapsulates the solutions of 9 particle distribution equations (the

9 black dots) for a particular particle being displaced through the 2-d space lattice. The

neighborhood interactions in the D2Q9 example are such that if all the points in every blue

box are collapsed into a single node representing all the associated computations, the flow

dependences are similar to those of a typical stencil computation (refer Figure 3.7(b)).

Suppose that the computations associated with a node A[t, i, j] are performed at logical

time (t, i, j) and that the size of the array space is N in each dimension. The conflict set

CS of conflicting indices (t, i, j) ./ (t ′, i′, j′) for the array space A is specified in 3.7(c).

There is no hyperplane that satisfies all the conflicts on its own (refer Figure 3.7(d)). The

canonical hyperplanes (1,0, 0), (0, 1,0),(0, 0,1) individually do not satisfy all conflicts ei-

ther. Among the hyperplanes that satisfy all conflicts in three of the four conflict polyhedra,

(−2, 1,0) leads to the smallest contraction modulus (N+2). It satisfies all but the conflicts

in violet. Since all the conflicts are not satisfied yet, another storage hyperplane must be

found. The revised conflict set, containing only the unsatisfied conflicts, is essentially the

conflict polyhedron made up of the violet conflicts. The hyperplane (0, 0,1) satisfies all

of them with the smallest contraction modulus N . The final storage mapping obtained is

3.7. Examples 41

j

t

i

(a) LBM − D2Q9 in a pull model

A[t ′, i′, j′]

j

t

i

(b) Inter-node flow dependences: (1,0, 0),

(1, 0,1), (1,1, 0), (1,1, 1), (1, 0,−1),

(1,−1,0), (1,−1,−1), (1, 1,−1), (1,−1, 1).

��

t, i, j
�

,
�

t ′, i′, j
�

∈ A
�

∧
���

t = t ′
�

∧
�

i = i′
�

∧
�

j′ > j
��

∨
��

t = t ′
�

∧
�

i′ > i
��

∨
��

t ′ = t + 1
�

∧
�

i′ ≤ i
��

∨
��

t ′ = t + 1
�

∧
�

i′ = i+ 1
�

∧
�

j′ ≤ j
���

.

(c) The conflict set specification.

(t, i, j)

j

t

i

(d) Different colours differentiate conflicts

from different conflict polyhedra.

Figure 3.7: As in a stencil, node A[t ′, i′, j′], in Figure 3.7(b), depends on neighboring

nodes from the previous time step.

A[t, i, j]→ A[(i − 2t)mod (N + 2), j mod N] . The storage requirement of this 2-d map-

ping, (N 2 + 2N) is marginally more than optimal storage size of (N 2 + N + 1), i.e., the

maximum number of live values at any point during the schedule.

3.7.4 Diamond Tiling

Loop tiling is a transformation which can be used to not only improve data locality but

also to exploit coarse-grained parallelism. The shape of the tile and its size together char-

acterize a loop tiling. However, with parallelization, a poor choice of the same can cause

42 3. Intra-Array Storage Optimization

t

i

AB

Figure 3.8: AB is the data tile written to by iterations within the tile outlined in black.

Live-out data in yellow.

load imbalance due to pipelined start-up and drain delay. Bandishti et al. [BPB12] de-

veloped a technique to obtain a diamond tiling, thereby enabling the concurrent start

of tiles. Figure 3.8 shows diamond tiling for a stencil with flow dependences (1,−1),

(1,0) and (1, 1). If B is the tile size, the live-out set is a union of polyhedra L1 and

L2 (specified in Figure 3.9(a)). Let (t t, ii) be the intra-tile iterators. Suppose that the

intra-tile schedule is sequential so that the value written to the memory cell AB[t t, ii] is

computed at time (t t, ii). If so, the live-out portion of the data tile is as shown in Fig-

ure 3.8. The intra-tile conflicts, in accordance with the conflict set specification CS of

conflicting indices (t t, ii) ./ (t t ′, ii′), are as shown in Figure 3.9(b). Our algorithm selects

the hyperplane (1,−3) as it satisfies all conflicts by itself, resulting in contraction modulus

(6B − 5). The final storage mapping AB[t t, ii]→ AB[(t t − 3ii)mod (6B − 5)] is not only

dimension-optimal but also has an asymptotically better storage requirement than that

of AB[t t, ii] → AB[t t mod B, ii mod (2B − 1)], which is found using successive modulo

technique. This storage mapping would hold even if the tiles are executed in parallel.

3.8. Enumerating Storage Mappings 43

L1 = {(t t, ii) | (t t ≤ 2B− 2)∧ (t t ≥ B− 1)∧ (ii ≥ t t − B+ 1)∧ (ii ≤ t t − B+ 2)} ,

L2 = {(t t, ii) | (t t ≤ 2B− 2)∧ (t t ≥ B− 1)∧ (ii ≤ B− t t − 1)∧ (ii ≥ B− t t − 2)} .

(a) Live-out set for the diamond tile shown in Figure. 3.8

CS =
��

ii′ ≥ ii+ 1
�

∧
�

t t ′ ≥ t t + 1
�

∧ (t t, ii) ∈ L1

�

∨
��

t t ′ ≥ t t + 2
�

∧ (t t, ii) ∈ L2

�

∨
��

t t = t t ′
�

∧
�

ii′ ≥ ii+ 1
��

∨
��

t t ′ = t t + 1
�

∧
�

ii′ ≤ ii
��

.

(b) Intra-tile conflict set specification. The last two disjuncts in the conflict set CS

represent conflicts due to flow dependences. The first two specify additional conflicts due

to live-out values.

(t t, ii)

(B− 1, 2B− 2)(B− 1, 0)

(2B− 2, B− 1)

(0, B− 1)
ii

tt

(c) All conflicts that are associated with the index (t t, ii) shown above, can be expressed

using just 3 polyhedra. The conflicts that are typically represented by the fourth conflict

polyhedron in the conflict set specification are similar to those shown in blue.

Figure 3.9: Diamond tiling – conflict set and its geometric representation.

3.8 Enumerating Storage Mappings

The storage partitioning approach described in this chapter so far was published in [BBC16a],

and as explained in Section 3.6, the solutions obtained using the partitioning approach

summarized in Algorithm 1 need not always be optimal. The primary objective is to max-

imize conflict satisfaction by minimizing the number of conflict polyhedra that are left

44 3. Intra-Array Storage Optimization

unsatisfied and thereby, minimizing the dimensionality of the storage mapping. However,

the storage requirements of higher dimensional mappings can often be less than that of

lower dimensional mappings. So, it is possible that the storage mapping corresponding to

the optimal storage requirement may be missed due to such an objective. In this section,

we introduce a useful variation of the storage partitioning approach that enables the enu-

meration of various valid storage mappings instead of a single one. This facility provides

the option of then picking the storage mapping with the least storage requirement among

all those enumerated.

Consider again the example of diamond tiling from Section 3.7.4. The storage mapping

obtained using the successive modulo technique and our intra-array storage optimiza-

tion heuristic are AB[t t, ii] → AB[t t mod B, ii mod (2B − 1)] and AB[t t, ii] → AB[(t t −

3ii)mod (6B − 5)] respectively. The latter is dimension optimal and with a storage re-

quirement of 6B − 5. It also provides an improvement in storage over the former. How-

ever, the optimal storage requirement for the diamond tile is 4B − 2; this corresponds to

the modulo storage mapping AB[t t, ii]→ AB[ii mod (2B−1), t t mod 2]. This solution re-

quires the partitioning of the array space using two storage hyperplanes, (0, 1) and (1, 0).

Consequently, it is missed by our heuristic which is able to greedily satisfy all the conflicts

using the single storage hyperplane (1,−3).

3.8.1 Alternative Storage Hyperplanes

Suppose ~Γ is the storage hyperplane found by our greedy objective of conflict satisfaction

for a given conflict set CS = ∪i=l
i=1Ki. The general approach we take towards enumerating

multiple valid storage mappings is to introduce constraints to our ILP formulation which

facilitate the search for an alternative storage hyperplane ~Γ(I). Such an alternative storage

hyperplane is one which would have been discarded by our greedy objective in the absence

of such constraints. Once such an alternative hyperplane is found, another alternative

storage hyperplane, ~Γ(I I) can be found by constraining the ILP formulation further – and

so on, until a certain criterion is met. In essence, the problem of enumerating storage

mappings is turned into a problem of enumerating multiple storage hyperplanes.

3.8. Enumerating Storage Mappings 45

Let S be the set of conflict polyhedra satisfied by the storage hyperplane ~Γ. Clearly,

|S| = η. We experimented with several ways to constrain the search of alternative hyper-

planes. The most effective way that we found was to constrain the search to the space of

storage hyperplanes, all of which would satisfy a different set of conflict polyhedra. Con-

sequently, the constraint for finding an alternative storage hyperplane can be specified as

follows:

ΣKi∈S
�

x1i + x2i
�

< |S|. (3.9)

Essentially, the required alternative storage hyperplane would satisfy a different set of

conflict polyhedra if the sum of the decision variables associated with the conflict polyhe-

dra satisfied by ~Γ is less than the number of conflict polyhedra satisfied by it. Note that this

constraint does not exclude alternative storage hyperplanes which satisfy the same num-

ber of conflict polyhedra as ~Γ, but a different set of them and potentially with a higher

contraction modulus. A storage hyperplane ~Γ(I I) which is an alternative to both the storage

hyperplanes ~Γ and ~Γ(I) can then be found by adding constraints to ensure that it satisfies

a set of conflict polyhedra which is different from that of both those hyperplanes. Alter-

native hyperplanes can be found in this manner until the ILP is constrained so much that

the search space becomes empty – no subset of conflict polyhedra can possibly be satisfied

with all the additional constraints for finding alternative storage hyperplanes. Each of the

storage hyperplanes enumerated in this manner represents an alternative way of partition-

ing the given array space. As a result, each of them revises the conflict set CS in its own

way. Each revised conflict set can then serve as the basis for enumerating multiple storage

hyperplanes at the next level.

Note that there could also be occasions when an alternative hyperplane ~Γ(I) found in

this manner is nothing but the same as the one already found. In this case, we need not

consider this as an alternative solution. However, the ILP can be constrained further to

obtain other alternatives. For example, consider a conflict set with three conflict polyhedra

46 3. Intra-Array Storage Optimization

K1, K2, K3. Suppose the hyperplanes ~h and ~h′ satisfy K1, K2, K3 and K1, K2 respectively with

corresponding contraction moduli N and 2N . Consequently, our heuristic will chose ~h

over ~h′. Now, if the ILP is solved again after adding the alternative storage hyperplane

constraint (3.9), ~h will again be preferred over ~h′ as it results in a smaller contraction

modulus, even as it meets the new constraint for an alternative hyperplane by satisfying

only two of the given three conflict polyhedra.

Algorithm 2 provides a high-level summary of the approach to enumerate various stor-

age mappings for a given conflict set specification CS associated with the array space A.

Each element in the queue Q captures the state of each alternative ongoing storage parti-

tioning of the array space, with the pair – conflict set CS and empty vector of hyperplanes

– being enqueued to begin with (line 2). Each element in the queue is processed separately

to find an alternative storage partition of the array space (line 3 to line 14). The proce-

dure FIND-NEXT-HYPERPLANE is used to partition the array space by finding a hyperplane as

in Algorithm 1 (since the only difference is that the ILP system set up for finding the next

hyperplane is returned as well, the pseudo-code for it is not repeated here). The array

space is iteratively partitioned, revising the conflict set at each iteration, until all the con-

flicts are satisfied (line 6). Furthermore, for each hyperplane found, possible alternatives

to it are determined using the procedure FIND-ALTERNATIVE-HYPERPLANES (line 9). This pro-

cedure essentially adds the alternative storage hyperplane constraint, specified in (3.9), to

the ILP system and solves it again using the same greedy objective of maximizing conflict

satisfaction. If the alternative storage hyperplane found satisfies any conflict polyhedron

in the conflict set i.e., either of the two decision variables associated with it is set to 1, the

procedure is recursively called to determine other alternative hyperplanes — this proceeds

until the ILP system is constrained so much that no hyperplane can be found that satisfies

any conflict polyhedra. Furthermore, each of these partially complete alternative storage

partitions are inserted into the queue for further partitioning (line 22).

The enumerative heuristic essentially finds alternative hyperplanes by constraining the

search space so that conflicts in a different subset of conflict polyhedra are satisfied by

each alternative storage hyperplane. Consequently, if l is the number of conflict polyhedra

3.8. Enumerating Storage Mappings 47

Algorithm 2 Enumerate modulo storage mappings given a non-empty conflict set CS for

the array space A. ~P is the vector of program parameters.

1: procedure ENUMERATE-MODULO-MAPPINGS(A, CS, ~P)

2: Enqueue (CS, ()) to queue Q

3: while Q is not empty do

4: (CS′, ~H)← dequeue(Q)

5: m← dim(~H)

6: while CS′ 6=∅ do

7: m← m+ 1

8: ((Γm, em), C)← FIND-NEXT-HYPERPLANE(CS′)

9: Q← FIND-ALTERNATIVE-HYPERPLANES(CS′, C ,Q, ~H,Γm)

10: Revise the conflict set CS′ (refer 4.11) by revising the conflict polyhedra as

shown in (3.7)

11: ~H ← append(~H, (Γm, em))

12: Let M be the transformation matrix with hyperplanes Γ1,Γ2, . . . ,Γm forming

its rows
13: Let ~e be the vector of contraction moduli

�

e1, e2, . . . , em
�

14: Print the storage mapping characterized by : (M ,~e)

15: procedure FIND-ALTERNATIVE-HYPERPLANES(CS′, C , Q, ~H, Γ)

16: Add alternative hyperplane constraint for Γ as shown in (3.9) to C

17: Compute lexicographic minimal solution as shown in (3.6) to obtain the hyper-

plane Γ′ and the corresponding contraction modulo e′

18: if Γ′ satisfied any conflict polyhedron in CS′

19: Q← FIND-ALTERNATIVE-HYPERPLANES(CS′, C ,Q, ~H,Γ′)

20: if hyperplane-not-al read y- f ound(~H,Γ′)

21: Revise the conflict set CS′ (refer 4.11) by revising conflict polyhedra as shown

in (3.7)

22: Q← enqueue(Q, (CS′, append(~H, (Γ′, e′)))

return Q

48 3. Intra-Array Storage Optimization

in the input conflict set specification CS for a given level of the enumerative heuristic, at

most 2l storage hyperplanes can be found at that level. This corresponds to the number of

subsets of conflict polyhedra that are possible. With many of the techniques employed to

determine storage hyperplanes having exponential worst-case complexity, this exponen-

tial number of possible alternative storage hyperplanes only worsens the complexity of the

enumerative heuristic. However, in practice, we have seen that it is unlikely that a feasible

storage hyperplane will be found for each possible subset of conflict polyhedra – the ILP

constraints often drastically cut down the number of subsets which can be satisfied to-

gether. Furthermore, we have noticed that the quality of the storage mappings diminishes

with the number of alternatives found. Therefore, a more practical approach would be to

limit the number of alternatives to a small number. This can be considerably useful for

array spaces of high dimensionality with potentially large number of conflict polyhedra.

3.8.2 Diamond Tiling Revisited

The intra-tile conflict set for a diamond tile, as shown in Fig. 3.9(b), is a union of four con-

flict polyhedra. Geometrically, conflicts in these four polyhedra are shown in Fig. 3.9(c)

with double-headed arrows of the colours green, blue, red and orange respectively. As

explained earlier, the storage hyperplane (1,−3) satisfies all these conflicts on its own.

Now, if Algorithm 2 is applied to enumerate various storage mappings, the first alterna-

tive storage hyperplane found is (−1, 0) which satisfies all conflicts except the red ones.

Further search after constraining the ILP to ensure satisfaction of a different set of conflict

polyhedra leads to the hyperplane (0,−1) which satisfies all except the orange conflicts.

Finally, a third alternative is found in the hyperplane (−1, 1) which does not satisfy the

green conflicts but satisfies all others. At this point, the ILP has been constrained too much

to obtain a different storage hyperplane that satisfies a different set of conflict polyhedra.

Note that each of the four storage hyperplanes found so far satisfy a distinct set of conflict

polyhedra. The last three of these i.e., (−1, 0), (0,−1) and (−1,1) each leave a single

conflict polyhedron unsatisfied. These unsatisfied conflicts are then satisfied in the subse-

quent array space partitioning iteration through the storage hyperplanes (0,1), (1,0) and

3.9. Related Work 49

(0,1) respectively. Consequently, the four modulo storage mappings enumerated are as

follows:

A[t t, ii]→ A[(t t − 3ii)mod (6B− 5)]

A[t t, ii]→ A[(−t t)mod B, ii mod (2B− 1)]

A[t t, ii]→ A[(−ii)mod (2B− 1), t t mod 2]

A[t t, ii]→ A[(−t t + ii)mod (2B− 1), ii mod B]

Among these, it can be see that the third storage mapping has the least storage require-

ment of (4B− 2).

3.9 Related Work

Several array contraction techniques have been designed to reduce the memory footprint

through a combination of dedicated loop transformations, mainly loop fusion and tiling,

with a form of liveness analysis [MCT96, LLL01, Pik02]. In this work, we look for the most

compact and efficient storage without questioning the quality of the loop nest’s sched-

ule or control flow. While early storage mapping optimizations [CDRV97, SCFS98] dealt

with constant distance vectors, recent ones can operate on polyhedral abstractions [LF98,

CC04, DSV05, ABD07]. The latter also benefit from array data-flow analysis to refine

liveness information [DIY16b].

The intra-array optimization strategy of De Greef et al. [GCM97b] relies on the exis-

tence of a linearized schedule θ , and on canonical linearizations of the array space. The

reuse distance is computed as the maximum of the address differences between mem-

ory cells that are simultaneously live at any point during the entire execution schedule

plus 1. A 1-d modulo storage mapping is obtained with the linearized access modulo the

reuse distance. However, for the example in Figure 3.1, even with a linearized schedule of

θ(t, i) = t ∗N + i, it can be seen that this technique would not match the optimal solution

50 3. Intra-Array Storage Optimization

found using our technique. Clauss et al. [CFGV09] determine the storage requirement of

affine loop nests by counting the points in a polyhedra and by maximization of polyno-

mials. While polynomial mappings are more general, our work focuses on affine modulo

mappings for which we could develop concrete cost functions using integer linear pro-

gramming. Wilde and Rajopadhye [WR96], and later Quilleré and Rajopadhye [QR00],

consider projective memory allocation functions to optimize memory usage in ALPHA pro-

grams. They introduced storage mapping optimization as the search for a low-dimensional

linear projective allocation function. They also proposed an algorithm to minimize the di-

mensionality of the allocated arrays, but did not attempt to optimize for a more accurate

model of the memory footprint, and did not consider scenarios where a portion of the

variable is live-out, for example, in the case of tiled programs or the introductory example

(Figure 1.1). As we have seen, this can introduce additional conflicts that do not arise due

to flow dependences. Thus, for the benchmarks in Table 5.1 or Figure 1.1, their approach

will be unable to improve mappings found by the successive modulo technique.

The notion of a conflict polyhedron was introduced by Darte et al. [DSV05, ABD07]

in their work on lattice-based memory allocation. The bounds and heuristics explored by

Darte et al. [DSV05] are under the assumption that the conflicting index difference set

DS is approximated as a 0-symmetric convex polyhedron. Our approach is fundamen-

tally different—relying on the notion of conflict satisfaction, and works naturally with the

conflict set expressed as a union of polyhedra. As we have seen, for tiled codes with

boundary live-outs in multiple directions, our approach leads to an order of magnitude

reduction in storage; this is a drastic reduction in memory, immediately observable in

common practical cases. For the simple producer-consumer example in Figure 3.1, with

n = 9, all heuristics implemented in Bee+cl@k [Ali07] determined the same modulo

storage mapping of a[t, i] → a[t mod 9, i mod 9], using the same bases for computing

the contraction moduli as that suggested by Lefebvre and Feautrier [LF98]. Their opti-

mal search-based method for the convex approximation of the problem came up with the

mapping, a[t, i] → a[t mod 1, (14t + i)mod 61], which clearly uses more storage than

a[t, i]→ a[(i− t)mod 17], obtained using our technique.

3.9. Related Work 51

Following closely upon the heels of our work on intra-array storage reuse [BBC16a],

Darte et al. have extended their lattice based allocation framework [DIY16a] to improve

the quality of storage mappings obtained under it when the conflict constraints are a

non-convex union of polyhedra. Furthermore, unlike the earlier lattice based heuristics

that dealt with fixed basis, the generalized heuristics presented in their recent work are

also extended with schemes to choose suitable bases. The basis selection scheme essen-

tially minimizes the ‘width’ of the chosen direction at each step. Although this greedy

approach can lead to sub-optimal solutions, it can easily be adapted to handle parametric

constraints. Another heuristic, which complements the basis selection scheme, deals with

reuse vectors instead of hyperplanes or directions of mapping. Any reuse vector found

must be the integral vector with the smallest norm among all vectors that lie outside the

extrusion of the non-convex union K , along the basis vectors which have already been

found. Smaller the vector, greater will be the reuse. Furthermore, due to the difficulty in

handling non-constant reuse vectors, parameters are handled by projecting them out in

order to first find constant reuse vectors. Since this heuristic is not easily adapted to non-

constant reuse vectors, a third combined heuristic is finally proposed with takes the best of

both worlds: first, find as many constant reuse vectors as possible and then use the basis

selection scheme to contract the array in the orthogonal space. The combined heuristic

seems like a particularly clinical approach to the problem. However, as the authors them-

selves admit, it is not clear if the extended lattice based allocation schemes, which rely

on reuse vectors, can be generalized to exploit inter-array reuse opportunities as we have

done with the array partitioning approach (more on this generalization in Chapter 4).

Strout et al. [SCFS98] introduced the concept of an occupancy vector, which captures

the duration (as a distance vector) after which a location can be reused in a repeated

fashion. The universal occupancy vector (UOV) is one that is valid for any valid loop

schedule, and a search-based approach is proposed to find the optimal UOV. The storage

mappings that they derive from a UOV and our storage mappings are conceptually similar

in that both specify an array partitioning, but differ in their mathematical form and in

the approach used to find them. Since our mappings are for a particular schedule, they

52 3. Intra-Array Storage Optimization

are expected to lead to less storage: for example, assuming identity schedules, (N + 3)

versus 2N for a 5-point 1-d stencil, N 2 + 2N instead of 2N 2 for LBM-D2Q9. However,

schedule-independent UOV-based solutions for programs with constant dependences and

multi-boundary live-outs (tiled or untiled) are still an order of magnitude better than those

that use canonical bases [LF98], and those which are unable to find the right bases for such

codes [QR00, DSV05, ABD07]. Another key difference is that the approach in [SCFS98] is

designed for perfect loop nests with constant dependences. Thies et al. [TVSA01, TVA07]

extend the notion of occupancy vector to an affine occupancy vector, which is valid for

any valid affine schedule. They also discuss a technique for determining a storage map-

ping given an affine schedule. However, the given schedule needs to be one-dimensional

thereby restricting the class of programs which lend themselves to their technique. In con-

trast, our technique supports multi-dimensional schedules even as it contracts the array

along multiple dimensions.

The solution to the storage optimization problem discussed so far in this work pertains

to intra-array reuse. The graph coloring technique prescribed for inter-array reuse in

[LF98] is complementary to intra-array approaches, and can be used in conjunction to

reduce the total number of arrays used in the program.

Finally, although there is complex interplay between a schedule and storage optimiza-

tion, schedules have a direct impact on other important aspects, evidently parallelism and

single-thread performance. The overall scheme that our approach fits in is thus one of first

determining a schedule and then reducing its memory footprint maximally.

CHAPTER 4

AN INTEGRATED APPROACH TO

STORAGE OPTIMIZATION

In the previous chapter, we discussed our approach based on array space partitioning for

exploiting intra-array reuse opportunities. In order to exploit inter-array storage reuse

opportunities, Lefebvre and Feautrier [LF98] proposed the construction of array interfer-

ence graphs based on a straightforward computation of the rectangular hull. However,

this can often fail to exploit the full potential for inter-statement storage reuse. In this

chapter, we present the basic framework for a unified approach that can be used to exploit

intra-statement as well as inter-statement storage reuse opportunities.

4.1 A Simple Example

Consider the static control loop nest in Figure 1.2 introduced in Chapter 1, performing a

ping-pong style 1-d stencil computation. Suppose the statements S0 and S1 are executed

according to identity schedules: θ0(t, i) = (t, 0, i) and θ1(t, i) = (t, 1, i) respectively. Since

the loop nest is not in single-assignment form, prior to the application of the successive

53

54 4. An Integrated Approach to Storage Optimization

1 // time-iterated stencil
2 for (t=1; t<=N; t++){
3 for (i=1; i<=N; i++)
4 /*S0*/ A0[t][i] = f((i>1 && t>1 ? A1[t-1][i-1] : Q[i-1]),
5 (t>1 ? A1[t-1][i] : Q[i]),
6 (i<N && t>1 ? A1[t-1][i+1] : Q[i+1]));
7 for (i=1; i<=N; i++)
8 /*S1*/ A1[t][i] = A0[t][i];
9 }

10 for(i=1; i<=N; i++)
11 result += A1[N][i];

(a) 1-d stencil from Figure 1.2 after total expansion.

i

t

i=1 i=N

t=1

t=N

(b) The instances of S1 which

compute the live-out data are

shown in yellow.

L =
�

(t, i) | (t, i) ∈ A1 ∧ (t = N)
	

.

CS0 =
�

(t, i) ,
�

t ′, i′
�

∈ A0 ∧
�

t = t ′
�

∧
�

i < i′
��

.

CS1 =
�

(t, i) ,
�

t ′, i′
�

∈ A1 ∧
�

t = t ′
�

∧
�

i < i′
��

.

(c) The intra-statement conflict sets for Figure 4.1(a).

CS0,1 = ((t, i) ∈ A0 ∧ (t ′, i′) ∈ A1

∧(t = t ′)∧ (i > i′)).

CS1,0 = ((t, i) ∈ A1 ∧ (t ′, i′) ∈ A0

∧((t + 1= t ′)∧ (i ≥ i′)).

(d) The inter-statement conflict sets for Figure 4.1(a).

Figure 4.1: Inter-statement and intra-statement conflict sets for 1-d ping-pong style sten-

cil 1.2.

modulo technique, the statements are rewritten so that each statement instance S0(t, i)

writes to its own distinct memory cell A0[t, i]; likewise, for the statement S1. Conse-

quently, the array spaces A0 and A1 have the same size and shape as the iteration domains

of the statement S0 and S1 respectively. Such a single-assignment version is shown in Fig-

ure 4.1(a). A geometric representation of the iteration domains of statements S0 and S1

in Figure 1.2 is shown in Figure 4.1(b). The black and blue dots represent instances of

4.1. A Simple Example 55

(t ′, i′)

(t ′, i′)

i

t

i=1 i=N

t=1

t=N

Figure 4.2: The red arrows denote the intra-statement conflicts (see Figure 4.1(c)).

the statements S0 and S1 respectively. The maroon arrows represent the flow dependences

from S1 to S0.

A few of the values computed by statement S1 are live even after the entire loop nest

has been executed. These live-out values reside in the set of memory cells L, specified in

Figure 4.1(c). Essentially, the top row computed by S1 is live-out (refer Figure 4.1(b)).

In general, the conflict set is made up of conflicts not only due to the uniform lifetimes

of the non-live-out values but also due to the non-uniform lifetimes of the live-out values.

Specifically, the array index associated with a live-out value conflicts with the array index

associated with any value computed later in the schedule. The conflict sets for the state-

ments S0 and S1, CS0 and CS1, are made up of pairs of conflicting indices (t, i) ./ (t ′, i′)

and can be represented as unions of convex polyhedra. The constraints for these conflict

sets are as specified in Figure 4.1(c). Because the conflict relation is, strictly speaking,

symmetric, the constraints represent a conflict between a pair of conflicting indices only

once, effectively treating it as an unordered pair. A geometrical representation of these

intra-statement conflicts is shown in Figure 4.2. The conflict set CS0 specifies that each

instance of the statement S0 conflicts with all other instances of S0 in the same row. Simi-

larly, the conflict set CS1 is also made of conflicts involving different indices from the same

row. The constraints in CS1 capture the conflicts created by the live-out values as well.

56 4. An Integrated Approach to Storage Optimization

4.1.1 Successive Modulo + Rectangular Hull

Applying the successive modulo technique on the conflict set CS0, at loop-depth 0, the

contraction modulus obtained is 1 as there are no conflicts along the t dimension. How-

ever, the contraction modulus at loop-depth 1 is N due to the conflict (1,1) ./ (1, N). The

resulting modulo storage mapping for the statement S0 is A0[t, i]→ A[t mod 1, i mod N].

For similar reasons, the contraction moduli for the conflict set CS1 are also 1 and N re-

spectively. The modulo storage mapping for the statement S1 is therefore, A1[t, i] →

A[t mod 1, i mod N]. In other words, both A0 and A1 are contracted to 1-dimensional

arrays of size N .

Suppose A0−1 is the rectangular hull of the arrays A0 and A1 thus contracted using

the successive modulo technique. Clearly, A0−1 is also a 1-dimensional array of size

N . Now, instead of the contracted arrays A0 and A1, suppose the statements S0 and S1

operate on this rectangular hull A0−1 in accordance with the write relations S0(t, i) →

A0−1[t mod 1, i mod N] and S1(t, i)→ A0−1[t mod 1, i mod N] respectively. Clearly, such

a storage mapping would create an output dependence between S1(t, i) and S0(t + 1, i)

i.e. the value computed by S1(t, i) would be overwritten with the value computed by

S0(t+1, i) prematurely, before a pending use of the former in the statement S0(t+1, i+1).

Therefore, such a rectangular hull cannot be used to serve inter-statement storage reuse

for the statements S0 and S1.

As already shown, a better storage mapping for the above example would be A j[t, i]→

A[(i− t)mod (N + 1)] for j = 0, 1. Such a mapping not only ensures that all the interme-

diate values computed are available until their last uses but also that the live-out values

are available even after the entire loop nest has been executed. Furthermore, it achieves

both intra-statement as well as inter-statement storage reuse, while reducing the storage

requirement for the loop nest from 2N to N + 1. This example shows that a straightfor-

ward computation of the contraction moduli along the canonical bases for intra-statement

storage reuse, followed by a simple rectangular hull estimate for inter-statement storage

reuse, can lead to solutions which can be worse than the optimal solution. As will be ex-

plained in the following sections, a better approach is to find storage hyperplanes for each

4.2. A Global Array Space 57

(t ′, i′)

(t ′, i′)

i

t

i=1 i=N

t=1

t=N

Figure 4.3: The orange arrows denote inter-statement conflicts (cf. Figure 4.1(d)).

statement which partition a global array space based on a global conflict set specification.

The required contraction moduli can then be computed along the hyperplane normals.

4.2 A Global Array Space

The process of total data expansion, described earlier in Section 2.4, is used to ensure that

each statement S j writes to its own distinct array space A j which has the same size and

shape as the iteration domain of S j. Suppose d j is the dimensionality of the array space

A j, with d being the maximum dimensionality of any such array space. Consequently, the

write relation for statement S j is of the form S j(~i) = A j[i0, i1, . . . , id j−1]. Instead of creating

separate arrays for each statement in this manner, we unify these arrays into a single global

array space A of (d + 1) dimensions. The given program can then be translated to single-

assignment form by rewriting it so that each statement S j writes to the global array space.

This must be in accordance with the write relation S j(~i) → A[j, i0, i1, . . . , id j−1, 0, . . . , 0]

with (d − d j) trailing zeroes for indexing the (d − d j) innermost dimensions. As in the

total data expansion process, the read accesses are altered accordingly to eliminate the

output and anti-dependences, while respecting flow dependences. The subspace A[j] in

the global array space A that is written to by the statement S j is said to constitute the local

array space of S j. It can be seen that A[j] is nothing but A j padded with (d−d j) additional

58 4. An Integrated Approach to Storage Optimization

inner dimensions.

The conflict set for exploiting intra-statement storage reuse need only consist of con-

flicts involving indices from the same local array space. Such conflicts are referred to as

intra-array or intra-statement conflicts. Analogously, it is also possible to think of inter-

array or inter-statement conflicts spanning two different local array spaces which must be

analyzed in order to exploit inter-statement storage reuse. A global array space allows us

to define a global conflict set that is a specification not just of the intra-statement con-

flicts but also of the inter-statement conflicts. The global conflict set can then serve as

the basis for finding suitable storage mappings for each statement. The inter-statement

conflicts for the example in Figure 4.1(a) are specified in Figure 4.1(d). The conflict set

CS0,1 represents conflicts which specify that a value computed by S1 must not overwrite

those computed by S0 which still have a pending use. Similarly, the conflict set CS1,0

specifies that a value computed by S0 must not be overwritten prematurely by S1. A ge-

ometrical representation of these conflicts is shown in Figure 4.3. The global conflict set

CS for the global array space is nothing but the union of the inter-statement conflicts and

intra-statement conflicts specified in Figure 4.1(c) and Figure 4.1(d).

4.3 Conflict Satisfaction in a Global Array Space

We formalize here the notion of storage partitioning hyperplanes (or storage hyperplanes)

satisfying a conflict ~i ./ ~j in the global conflict set CS. Suppose the conflict is between

indices from local array spaces A[s] and A[t] corresponding to the statements Ss and

St respectively. The conflict is an intra-statement one if s = t, otherwise it is an inter-

statement conflict.

Definition 4. Given a pair of indices ~i and ~j in the global array space A such that ~i ∈ A[s]

and ~j ∈ A[t], a conflict between ~i and ~j is said to be satisfied by the hyperplanes ~Γs and ~Γt

with corresponding offsets δs and δt if (~Γs.~i+δs − ~Γt .~j−δt) 6= 0.

Imagine the global array space being partitioned separately by the hyperplanes ~Γs and

~Γt for the statements Ss and St . The conflict ~i ./ ~j is said to be satisfied by them if the

4.3. Conflict Satisfaction in a Global Array Space 59

array indices are not mapped to the same partition. This a generalization of Definition 3

for multiple statements. Furthermore, an important difference is that we now characterize

a hyperplane by both its normal and its offset (whereas so far, we only considered the

normal). The rationale behind considering the offset is that a well-chosen constant shift

of the local array spaces can often enable inter-statement storage reuse. However, if the

purpose is only intra-array reuse, the offset can be dispensed with.

The successive modulo technique can also be understood through this notion of conflict

satisfaction. Consider again the loop nest in Figure 4.1. Suppose A is the 3-dimensional

global array space obtained by unifying the local array spaces A0 and A1. Finding the con-

traction moduli along the canonical axes t and i is then akin to partitioning the global

array space A through the storage hyperplanes (0,1, 0) and (0,0, 1), with zero offset for

both. Together, they satisfy all intra-statement conflicts. For example, if we consider the

statement S1, there are no conflicts across rows in the local array space A1. Consequently,

the hyperplane (0, 1,0) does not satisfy any conflict. The contraction modulus for this stor-

age hyperplane is therefore equal to 1. However, the local array space A1 is then divided

into N partitions by the storage hyperplane (0,0, 1), which satisfies all the intra-statement

conflicts of S1 (none of which were satisfied by the previous storage hyperplane) e.g.

A[1, 1,1] ./ A[1,1, N] is satisfied by the hyperplane (0, 0,1). As a result, the conflicting

indices in the conflicts which were not satisfied at the previous level end up in different

partitions. In essence, the successive modulo approach can also be understood as conflict

satisfaction being performed by successively partitioning the array space using a series of

storage hyperplanes. Furthermore, in accordance with the rectangular hull method for

inter-statement storage reuse, the two contracted arrays cannot be fused. This can be

understood as the inter-statement conflicts being satisfied by the zero-offset hyperplane

(1,0, 0), with a contraction modulus equal to two. Consequently, the storage mappings

obtained for the statements S0 and S1 are A[0, t, i] → A[t mod 1, i mod N , 0 mod 2] and

A[1, t, i]→ A[t mod 1, i mod N , 1 mod 2] respectively.

All the intra-statement and inter-statement conflicts specified in Figure 4.1(c) and Fig-

ure 4.1(d) can thus be seen as being satisfied using the three canonical hyperplanes,

60 4. An Integrated Approach to Storage Optimization

(0,1, 0), (0,0, 1) and (1,0, 0), considered in that order. The above description of the

successive modulo technique and the rectangular hull method suggests that the storage

hyperplanes could trivially correspond to the canonical axes of the global array space.

The dimensionality of the global array space is then a loose upper bound on the num-

ber of storage hyperplanes that need to be found for a particular statement in order to

satisfy all conflicts associated with it. However, consider the alternative storage mapping

A[j, t, i]→ A[(i− t)mod (N +1)]. The overall storage requirement for such a mapping is

(N + 1) which is less than that of the solution obtained using the canonical hyperplanes

by a factor of two. Furthermore, by reducing the storage requirement further down to

(N + 1), there is greater inter-statement reuse. The existence of such a mapping suggests

that it is possible to satisfy all the conflicts — intra-statement as well as inter-statement —

using just one storage hyperplane.

4.4 A Global Array Space Partitioning Approach

Consider a static control part with r statements S0, S1, . . . , Sr−1. Suppose that each state-

ment S j, with an n j-dimensional iteration domain D j, writes to an array space A j (of the

same size and shape as D j due to total data expansion). Let A be the n−dimensional

global array space constructed by unifying all the individual array spaces. The problem of

exploiting intra-statement as well as inter-statement storage reuse can be seen as a prob-

lem of finding a set of m partitioning hyperplanes ~Γ(1)j ,~Γ(2)j , . . . ,~Γ(m)j with corresponding

offsets δ(1)j ,δ(2)j , . . . ,δ(m)j for each statement S j such that the following conditions are met.

• Every conflict within the local array space A[j] of statement S j must be satisfied by

at least one of the m hyperplanes found for it.

• An inter-statement conflict involving the statements S j and Sk must be satisfied by

at least one pair of hyperplanes Γ(l)j and Γ(l)k , both of which are at the same level l

for the statements S j and Sk respectively.

4.5. Finding Storage Hyperplanes 61

Consider the storage hyperplanes ~Γ(l)0 ,~Γ(l)1 , . . . ,~Γ(l)r−1 found for the r statements at a

certain level l. The contraction modulus e(l)j for a statement S j at level l can be computed

as the maximum conflict difference among all the conflicts associated with the statement S j

which are satisfied at that level i.e., max(| ~Γ(l)j .~s+δ(l)j −~Γ
(l)
k .~t−δ(l)k |) for all conflicts ~s ./ ~t

being satisfied by the hyperplanes ~Γ(l)j and ~Γ(l)k . Therefore, the m-dimensional modulo

storage mapping for each statement S j would be of the form A[~i]→ A[(M j
~i+ ~δ j)mod ~e j].

The vector ~e j in the storage mapping is nothing but the vector of contraction moduli

computed in this manner for the statement S j at each level. The transformation matrix M j

is an m× n matrix constructed using the m storage hyperplanes found for the statement

S j as the m rows of the matrix. If a hyperplane Γ(l)j = (γl,1,γl,2, . . . ,γl,n), then the storage

mapping matrix M j is an m× n matrix with the l th row
�

γl,1 γl,2 . . . γl,n

�

. The storage

hyperplane offsets δ(1)j ,δ(2)j , . . . ,δ(m)j make up the vector ~δ j.

4.4.1 Global Conflict Set Specification

The global conflict set can be specified as a union of convex polyhedra. A few of these

conflict polyhedra represent only the intra-statement conflicts, e.g. the conflict polyhe-

dra in CS0 and CS1 (Figure 4.1(c)). The remaining conflict polyhedra specify only the

inter-statement conflicts with the convention that all conflicts represented in a given inter-

statement conflict polyhedron involve indices from the same pair of local array spaces, for

example, the conflict polyhedra in CS0,1 and CS1,0 (Figure 4.1(d)). In essence, the domain

and range of a conflict polyhedron must be sub-spaces of the same local array space or of

two different ones.

4.5 Finding Storage Hyperplanes

Storage hyperplanes only need to be found when the global conflict set is non-empty.

Otherwise, all statements can write to a shared scalar variable. This section describes our

approach for finding storage hyperplanes to exploit both intra-array and inter-array reuse.

62 4. An Integrated Approach to Storage Optimization

4.5.1 Analyzing Intra-Statement Conflicts

In this section, we generalize our approach from Chapter 3 for analyzing intra-statement

conflicts defined over a global array space obtained by unifying the local array spaces of

multiple statements. Suppose there are l conflict polyhedra K1, K2, . . . , Kl so that the global

conflict set CS = ∪i=l
i=1Ki. Consider a pair of conflicting indices ~s,~t ∈ A j where A j is the local

array space of the statement S j. In accordance with Definition 4, the hyperplane ~Γ j with

an offset δ j, which needs to be found for statement S j, will satisfy such an intra-statement

conflict if (~Γ j.~s − ~Γ j.~t) 6= 0; the offset δ j of the hyperplane is immaterial. This is also in

accordance with the approach of Bhaskaracharya et al. [BBC16a], which was described

in the previous chapter, and is akin to partitioning the local array space A j to satisfy the

intra-statement conflicts within it i.e., the intra-statement conflicts can be analyzed just as

though we were dealing with a single statement despite all statements writing to a shared

global array space.

Suppose (~u j.~P+w j) is the upper bound on the conflict difference (~Γ j.~s−~Γ j.~t) for intra-

statement conflicts associated with statement S j. Similar to the constraint (3.4), we can

formulate the following bounding constraint:

�

~Γ j.~s− ~Γ j.~t
�

≤
�

~u j.~P +w j

�

≤
�

c~P + c
�

∧ −
�

~Γ j.~s− ~Γ j.~t
�

≤
�

~u j.~P +w j

�

≤
�

c~P + c
�

. (4.1)

Additionally, following the rationale behind the constraint (3.5), a pair of binary deci-

sion variables x1i,x2i for the intra-statement conflict polyhedron Ki can similarly be used

to encode the satisfaction of such conflicts associated with statement S j as follows:

�

~Γ j.~s− ~Γ j.~t
�

≥ 1−
�

1− x1i
�

�

c~P + c+ 1
�

∧
�

~Γ j.~s− ~ΓJ .~t
�

≤−1+
�

1− x2i
�

�

c~P + c+ 1
�

. (4.2)

In this way, each intra-statement conflict polyhedron is associated with its own pair of

binary decision variables, both of which cannot simultaneously be equal to one. Suppose

4.5. Finding Storage Hyperplanes 63

CSint ra represents the set of intra-statement conflict polyhedra. The number of intra-

statement conflict polyhedra ηint ra, all of whose conflicts are satisfied by the hyperplane

found for the corresponding statement can then be estimated as follows:

ηint ra =
∑

∀i, Ki∈CSint ra

�

x1i + x2i
�

. (4.3)

In the previous chapter, we have shown that maximizing conflict satisfaction is a rea-

sonably effective heuristic for exploiting intra-statement storage reuse opportunities. Es-

sentially, fewer the number of conflicts which are left unsatisfied, fewer the number of

storage hyperplanes required to satisfy all conflicts. Reasoning along similar lines, our

primary objective is also to maximize the total number of intra-statement conflict polyhe-

dra ηint ra all of whose conflicts are satisfied. Such a greedy approach tries to minimize

the number of storage hyperplanes required to satisfy intra-statement conflicts so that the

dimensionality of the contracted local array spaces will be as small as possible.

4.5.2 Analyzing Inter-Statement Conflicts

Now that we have analyzed the intra-statement conflicts associated with a statement S j,

let us consider the inter-statement conflicts associated with it. Suppose Sk is another

statement which writes to its local array space Ak and that Ki ∈ CS is an inter-statement

conflict polyhedron which specifies the inter-statement conflicts ~s ./ ~t such that ~s ∈ A j

and ~t ∈ Ak. In accordance with Definition 4, such a conflict is satisfied by the storage

hyperplanes ~Γ j and ~Γk with corresponding offsets δ j and δk if (~Γ j.~s+δ j − ~Γk.~t −δk) 6= 0.

As described earlier, a finite upper bound of the form (~u j.~P + ~w j) can be enforced on

the intra-statement conflict difference for S j. Similarly, suppose that the statement S j is

associated with another (~u′ j.~P + w′j) which serves as the bound on any inter-statement

conflict difference (~Γ j.~s + δ j − ~Γk.~t − δk) associated with it. This leads to the following

64 4. An Integrated Approach to Storage Optimization

bounding constraints:

�

~Γ j.~s+δ j − ~Γk.~t −δk

�

≤
�

~u′ j.~P +w′j
�

≤
�

c~P + c
�

∧ −
�

~Γ j.~s+δ j − ~Γk.~t −δk

�

≤
�

~u′ j.~P +w′j
�

≤
�

c~P + c
�

. (4.4)

The inter-statement conflict difference could be positive, negative or equal to zero.

Therefore, similar to the constraints in (4.2), the following constraints can be imposed on

the inter-statement conflict difference (~Γ j.~s + δ j − ~Γk.~t − δk) through a pair of decision

variables x1i and x2i for the inter-statement conflict polyhedron Ki:

�

~Γ j.~s+δ j − ~Γk.~t −δk

�

≥ 1−
�

1− x1i
�

�

c~P + c+ 1
�

∧
�

~Γ j.~s+δ j − ~Γk.~t −δk

�

≤−1+
�

1− x2i
�

�

c~P + c+ 1
�

. (4.5)

The affine form of Farkas’ lemma [Sch86, Fea92a] can be applied on the constraints

formulated in (4.1), (4.4) and (4.2), (4.5), to obtain a set of linear equalities/inequal-

ities by equating the coefficients of the loop variables, thereby eliminating them. Now,

let CSinter represents the set of inter-statement conflict polyhedra. The number of inter-

statement conflict polyhedra ηinter , all of whose conflicts are satisfied by the hyperplanes

found for the pair of statements associated with them can be estimated as follows:

ηinter =
∑

∀i, Ki∈CSinter

�

x1i + x2i
�

. (4.6)

4.5.3 A Greedy Objective

The resulting ILP system consists of constraints obtained due to the set of bounding con-

straints in (4.1) and (4.4), the decision constraints in (4.2) and (4.5) and also the con-

straints on ηint ra and ηinter given by (4.3) and (4.6). Such constraints are derived for each

of the l conflict polyhedra depending on whether they represent intra-statement conflicts

or not.

4.5. Finding Storage Hyperplanes 65

As explained earlier, the primary objective of our greedy approach is to maximize intra-

statement conflict satisfaction by maximizing ηint ra. Another factor which needs to be

considered while determining the storage hyperplanes is the storage size of the resulting

modulo storage mapping for a statement S j. In the successive modulo technique, the

storage size of a modulo mapping obtained is computed as the product of the contraction

moduli. The moduli themselves are computed along the canonical bases. The contraction

modulus along a canonical basis is one plus the maximum conflict difference along it.

Essentially, the canonical bases also serve as the storage hyperplane normals.

In general, the storage hyperplanes that we need to determine may not correspond to

the canonical bases. Furthermore, when both intra-statement and inter-statement conflicts

are considered together, the maximum conflict difference among the conflicts involving

the statement S j could be its maximum intra-statement conflict difference or its maximum

inter-statement conflict difference, depending on which is greater. The former is bounded

by (~u j.~P + w j) while the latter is bounded by (~u′ j.~P + w′j). Clearly, it is necessary to keep

both of them to a minimum. We set ~u′ j to be element-wise greater than or equal to ~u j

and w′j ≥ w j. We will see that this does not lead to a loss of optimization opportunity

and is in fact used to prevent aggressive satisfaction of inter-statement conflicts which

can lead to a large inter-statement conflict difference (~u′ j.~P + w′j). Consequently, since

(~u′ j.~P + w′j) is greater than or equal to (~u j.~P + w j), as our secondary objective, we try

to minimize the contraction modulus for each statement by first minimizing the bound

(~u j.~P + w j) associated with it. Even if (~u′ j.~P + w′j) proves to be a loose bound on the

inter-statement conflict difference, giving precedence to the minimization of (~u j.~P + w j)

over that of (~u′ j.~P +w′j) does not affect the final contraction modulus.

Note that it is possible to satisfy all inter-statement conflicts in one go by choosing the

canonical basis for the outermost dimension in the global array space as the first storage

hyperplane for every statement. However, premature satisfaction of inter-statement con-

flicts in this way can destroy any opportunity available for inter-statement reuse. This is

why the primary and secondary objectives are focused mainly on satisfying intra-statement

conflicts. It is equivalent to solving the problem of intra-array reuse for each statement

66 4. An Integrated Approach to Storage Optimization

separately. This is in line with the general approach of Lefebvre and Feautrier [LF98],

who also give precedence to exploiting intra-statement storage reuse over inter-statement

storage reuse. However, while maximizing intra-statement conflict satisfaction, it is also

possible to satisfy inter-statement conflicts. A particularly interesting case is when all the

inter-statement conflicts are satisfied as a side-effect of satisfying intra-statement conflicts.

In other words, if no hyperplane is needed to exclusively satisfy the inter-statement con-

flicts, it means that inter-statement storage reuse has already been achieved. However, if

inter-statement conflicts are satisfied too aggressively, this may have to be at the expense

of increasing the inter-statement conflict difference too much, leading to a much higher

contraction modulus. Specifically, if (~u′ j.~P + w′j) will exceed (~u j.~P + w j) by more than a

constant additive factor, we choose to leave the inter-statement conflicts of S j unsatisfied.

Inter-statement conflict satisfaction is thus traded off in favor of a smaller contraction

modulus for the statement S j. If ~u j = (u(0), u(1), . . . , u(ρ−1)) and ~u′j = (u
′(0), u′(1), . . . , u′(ρ−1)),

ρ being the number of parameters involved, such a trade-off can be specified by the fol-

lowing constraint for each inter-statement conflict polyhedron Ki:

0≤
ρ−1
∑

p=0

�

u′(p)− u(p)
�

≤
�

1− x1i − x2i
��

cρ
�

. (4.7)

This constraint ensures that the inter-statement conflict polyhedron associated with state-

ment S j is allowed to be satisfied only if u′(p) = u(p) for p = 0,1, . . . ,ρ − 1. With these

additional constraints for every statement S j added to the ILP system, we can proceed to

maximize inter-statement conflict satisfaction as well by first maximizing ηinter while min-

imizing the bound (~u′ j.~P+w′j) on the inter-statement conflict difference of every statement

S j.

ηint ra and ηinter are at most equal to |CSint ra| and |CSinter | respectively. If η′int ra =

(|CSint ra| − ηint ra) and η′inter = (|CSinter | − ηinter), the fourfold objective of maximizing

ηint ra, minimizing (~u j.~P + w j), maximizing ηinter and finally, minimizing (~u′ j.~P + w′j) for

each statement S j can be achieved simultaneously by finding a lexicographically minimal

4.5. Finding Storage Hyperplanes 67

solution as follows:

minimize≺
n

η′int ra, u(0)0 , u(1)0 , . . . , u(ρ−1)
0 , w0, . . .

. . . , u(0)r−1, u(1)r−1, . . . , u(ρ−1)
r−1 , wr−1,

η′inter , u′(0)0 , u′(1)0 , . . . , u′(ρ−1)
0 , w′0, . . .

. . . , u′(0)r−1, u′(1)r−1, . . . , u′(ρ−1)
r−1 , w′r−1 }. (4.8)

Therefore, if no inter-statement conflict polyhedron associated with the statement S j is

satisfied, the contraction modulus is taken to be equal to (~u j.~P + w j + 1). Otherwise, it

equals (~u′ j.~P +w′j + 1).

4.5.4 Finding Storage Hyperplanes Iteratively

All the conflicts in the global conflict set may not necessarily be satisfied by the first set of

storage hyperplanes found for every statement. It is therefore necessary to eliminate the

conflicts, which have been satisfied so far, from the conflict set. Such a revised conflict set

can then be used to find another set of storage hyperplanes which can satisfy a few or all

of the remaining conflicts.

Suppose the hyperplanes ~Γ0,~Γ1, . . . ,~Γr−1 have been found for the statements S0, S1, . . . , Sr−1

respectively, based on the global conflict set CS = K1 ∪ K2 ∪ · · · ∪ Kl . Furthermore, let e j

be the contraction modulus determined for statement S j. Consider a conflict polyhedra Ki

which specifies conflicts between ~s ./ ~t. If Ki is an intra-statement conflict polyhedron, the

conflicts in it which are not satisfied by the storage hyperplane ~Γ j satisfy the constraint

(~Γ j.~s−~Γ j.~t = 0). This means that an intra-statement conflict polyhedron can be revised by

adding the constraint (~Γ j.~s− ~Γ j.~t = 0) to eliminate from it the conflicts which have been

satisfied:

∀Ki ∈ CSint ra, K ′i = Ki ∩
¦

�

~s,~t
�

| ~Γ j.~s− ~Γ j.~t = 0
©

. (4.9)

On the other hand, suppose Ki is an inter-statement conflict polyhedron representing

68 4. An Integrated Approach to Storage Optimization

conflicting indices from the local array spaces A j and Ak. In this case, a few unsatisfied

conflicts may have conflict difference (~Γ j.~s+δ j − ~Γk.~t −δk) equal to 0. Additionally, even

a few inter-statement conflicts whose conflict difference is not zero have to be treated as

unsatisfied. This is due to the trade-off involved in inter-statement conflict satisfaction. It

can be seen that such conflicts satisfy the constraint | ~Γ j.~s+ δ j − ~Γk.~t − δk |≥ min(e j, ek)

i.e., if the conflict difference exceeds or equals the contraction modulus computed either

for the statement S j or that for Sk, it must be treated as unsatisfied. An inter-statement

conflict polyhedron can therefore be revised as follows:

∀Ki ∈ CSinter , K ′i = Ki ∩
¦

�

~s,~t
�

|
�

~Γ j.~s+δ j − ~Γk.~t −δk = 0
�

∨ | ~Γ j.~s+δ j − ~Γk.~t −δk |≥ min
�

e j, ek

�©

. (4.10)

Consequently, the resulting global conflict set CS′ is given by:

CS′ = ∪1≤i≤l K
′
i . (4.11)

The next set of storage hyperplanes can now be found using the revised conflict set CS′

instead of the original conflict set CS. Note that if all the conflicts in a conflict polyhedron

Ki are satisfied by the hyperplane ~Γ j (and the hyperplane ~Γk, if it is an inter-statement

conflict polyhedron), none of these conflicts will be present in the revised conflict set CS′

as all of them are eliminated due to the addition of the above constraints. In this way,

the global array space is successively partitioned for each statement until all conflicts are

satisfied i.e., until conflict sets are eventually revised to empty sets. At each step, the

contraction moduli are also computed for every statement.

Algorithm 3 summarizes the partitioning-based approach to find modulo storage map-

pings for r statements S0, S1, . . . , Sr−1 given the global conflict set CS. The main proce-

dure, FIND-MODULO-MAPPINGS (line 1), determines the m storage hyperplanes iteratively

for each statement, revising the conflict set at each step as described above (lines 4-7).

The procedure, FIND-NEXT-HYPERPLANES (line 11), sets up the ILP system (lines 13-18)

necessary to determine the required storage hyperplanes (line 19) and the corresponding

4.5. Finding Storage Hyperplanes 69

Algorithm 3 Find modulo storage mappings for r statements given a non-empty conflict

set CS for the global array space A. ~P is the vector of program parameters.

1: procedure FIND-MODULO-MAPPINGS(A, CS, ~P)

2: CS′← CS

3: m← 1

4: while CS′ 6=∅ do

5: (Γ(m)0 ,Γ(m)1 , . . . ,Γ(m)r−1, e(m)0 , e(m)1 , . . . , e(m)r−1)← FIND-NEXT-HYPERPLANES(CS′)

6: Revise the conflict set CS′ using (4.11) by revising the conflict polyhedra

using (4.9) and (4.10)

7: m← m+ 1

8: for j← 0 to r − 1 do

9: Let M j be the transformation matrix for statement S j constructed with hyper-

planes Γ(1)j ,Γ(2)j , . . . ,Γ(m)j forming its rows

10: Let ~e j =
�

e(1)j , e(2)j , . . . , e(m)j

�

, the vector of contraction moduli

return (M0, M1, . . . , Mr−1,~e0,~e1, . . . ,~er−1)

11: procedure FIND-NEXT-HYPERPLANES(CS′)

12: C ←∅

13: for all conflict polyhedra K ′i ∈ CS′ do

14: Formulate bounding constraints using (4.1) and (4.4)

15: Formulate satisfaction decision constraints using (4.2) and (4.5)

16: Apply Farkas’ lemma to each of the above constraints (formulated in steps 14

and 15) to obtain an equivalent set of linear equalities/inequalities and add

them to C
17: Add constraint (4.7) for trading off inter-statement conflict satisfaction if Ki ∈

CSinter

18: Add the constraint on ηint ra and ηinter shown in (4.3) and (4.6) to C

19: Compute lexicographic minimal solution as shown in (4.8) to obtain the hyper-

planes Γ0,Γ1, . . . ,Γr−1 and the corresponding contraction modulo e0, e1, . . . , er−1

for the r statements

return (Γ0,Γ1, . . . ,Γr−1, e0, e1, . . . , er−1)

70 4. An Integrated Approach to Storage Optimization

contraction moduli.

4.5.5 Correctness, Termination and Optimality

The objective of successively partitioning the global array space is to ultimately satisfy all

conflicts. As we observed earlier in Section 3.5.2, a storage hyperplane that is linearly

dependent on the hyperplanes found in earlier iterations cannot satisfy any new intra-

statement conflicts. Furthermore, if there are some inter-statement conflicts associated

with a statement that are still not satisfied after all the associated intra-statement conflicts

have been satisfied, exactly one more storage hyperplane needs to be found for the state-

ment in order to satisfy them. Therefore, the iterative process is guaranteed to terminate.

In the scenario when there is only one statement, note that our ILP formulation and

our objective simplify to the one summarized in Algorithm 1 for the purpose of intra-

array storage optimization. While our approach does not guarantee storage optimality in

general, intra-array optimization is not penalized to allow inter-array reuse. This is due to

the way we order the objective functions. As argued in Section 3.5.2, a claim on optimality

cannot be made while not accounting for a number of orthogonal issues.

4.5.6 Array Decoalescing

Our partitioning approach is based on satisfying conflicts in the global array space A.

Consequently, the m-dimensional modulo storage mapping obtained for each statement S j

is also valid for this global array space. It is of the form A[~i]→ A[M j
~i mod ~e j] where M j is

the storage mapping matrix with the m hyperplanes found for S j serving as its rows. The

vector ~e j is the vector of m corresponding contraction moduli (e(1)j , e(2)j , . . . , e(m)j). In effect,

these storage mappings map all statements to a shared global array space.

The graph coloring approach by Lefebvre and Feautrier [LF98] tries to lump together

contracted arrays of different statements into a shared data structure by computing their

rectangular hull. Coalescing the contracted array spaces into a rectangular hull in this

4.5. Finding Storage Hyperplanes 71

manner can sometimes lead to excessive storage when compared to leaving them uncoa-

lesced. For example, coalescing a 2×N and an N×2 array can increase the overall storage

requirement dramatically to N 2. Since our heuristic attempts to find storage mappings for

each statement based on an already shared global array space, such a scenario is possible

even with our approach. It is therefore necessary to decoalesce such arrays so that the

corresponding statements can write to their own separate array spaces.

Consider two statements S j and Sk. If the contraction modulus vector ~e j is element-wise

greater than or equal to the vector ~ek, or vice versa, the two statements can clearly write

to the same array. In other words, the contracted array space for one can be completely

embedded inside the other. If this condition does not hold, it is better to map the two

statements to arrays of different names in order to avoid the storage overhead incurred as a

side-effect of computing the rectangular hull. The condition specified above for coalescing

is for a complete fit of one contracted array within another. But it can often be relaxed

slightly so that array coalescing is allowed so long as the contraction moduli of the two

array spaces involved are of comparable sizes. Since the contraction moduli are often

parametric, the relative sizes of the i th contraction moduli e(i)j and e(i)k (in the vectors ~e j

and ~e j) can be estimated by considering the contribution of their parametric parts alone.

This can be done by adding up the coefficients of the parameters in e(i)j and e(i)k respectively.

Let ∆(e(i)j) be the sum of the parametric coefficients in the contraction modulus e(i)j . Then

the condition for leaving the contracted array spaces of two statements coalesced can

be re-stated as (∆(e(1)j),∆(e
(2)
j), . . . ,∆(e(m)j) being element-wise greater than or equal to

(∆(e(1)k),∆(e
(2)
k), . . . ,∆(e(m)k) (or vice versa).

An undirected array coalescing graph G with r nodes can then be constructed such

that each node in the graph corresponds to a given statement. If a pair of statements S j

and Sk can write to the same array in accordance with the condition for array coalescing,

the graph G has an edge between the nodes corresponding to the two statements. All

statements belonging to the same connected component in the graph can then be mapped

to the same array. For example, consider the case of whether a 2× N storage mapping

should be coalesced with an N × 2 one. The contraction modulus vectors are nothing but

72 4. An Integrated Approach to Storage Optimization

the vector of the array sizes (2, N) and (N , 2) respectively. The parametric coefficient sums

for them are therefore (0, 1) and (1,0) respectively. Since neither of these two vectors is

element-wise less than the other, the two arrays are better left uncoalesced. Clearly, if we

construct an undirected graph as described above for these two, their corresponding nodes

would be in separate connected components. Now, suppose, there is another statement

which requires a contracted array space of size (N , N). This third array can be coalesced

with both of the other two arrays. Consequently, the array coalescing graph will have only

one connected component due to which all the arrays will be coalesced together.

Decoalescing the array spaces as described above divides the given set of statements

into equivalence classes. Statements in the same equivalence class can write to an array

of the same name using the storage mapping obtained for each of them. The sizes of

the m-dimensions for such an array are computed as the maximum of the corresponding

contraction moduli computed for each statement. Since our heuristic has a fairly low

running time, it can be run again on each of these equivalence classes of statements,

thereby completely ignoring conflicts across statements in different equivalence classes.

Example revisited Consider again the example in Figure 4.1. In Figure 4.4, conflicts

belonging to different conflict polyhedra (intra-statement as well as inter-statement) are

shown in different colours. Now, suppose the storage hyperplanes found for both the

statements S0 and S1 happen to be the same one—the canonical hyperplane (0,1, 0) with a

zero offset. In such a scenario, only the inter-statement conflicts shown in green would be

satisfied. On the other hand, if the zero offset canonical hyperplane (0,0, 1) is considered

for both the statements instead of (0, 1,0), it would satisfy all but the inter-statement

conflicts represented in CS1,0 with a maximum conflict difference of N . However, even

these conflicts can be satisfied by modifying the hyperplane choice to (0,−1,1), again

with a zero offset, while increasing the maximum inter-statement conflict difference to

(N + 1). Note that the intra-statement conflict differences do not change. Several other

hyperplanes such as (0,−2, 1), (0,−3, 1), which can also satisfy all conflicts, are ignored as

they would result in a bigger contraction modulus for both the statements. Furthermore,

4.6. Examples 73

(0,-1,1)

(t, i)

(t, i)

i

t

i=1 i=N

t=1

t=N

Figure 4.4: Storage hyperplane (0,−1, 1) satisfies all conflicts.

since all conflicts are satisfied by the hyperplane (0,−1,1) itself, there is no need to find

any more partitioning hyperplanes. Moreover, the storage hyperplane and the contraction

modulus found for the two statements happen to be the same. Consequently, the resulting

storage mapping for them is also the same: A[j, t, i]→ A[(i− t)mod (N +1)] for j = 0, 1.

The same array of size (N +1) can be written to by both the statements, thereby ensuring

inter-statement storage reuse. This mapping provides a storage size requirement which

is better than that obtained using the successive modulo technique by a factor of two. In

fact, the modulo storage mapping is storage optimal.

This example also shows that exploiting storage reuse can sometimes expose copy

elimination opportunities. The statement S1, after storage optimization, gets rewritten as

A[(i − t)mod (N + 1)] = A[(i − t)mod (N + 1)], which is a redundant copy operation

and can thus be eliminated. Consequently, the loop enclosing statement S1 can also be

eliminated. The resulting code is a perfect loop nest with statement S0.

4.6 Examples

This section discusses storage mappings obtained by our technique on a few examples

drawn from real-world scenarios to help understand it better.

74 4. An Integrated Approach to Storage Optimization

4.6.1 Blur filter

Consider again a tiled execution of the blur filter code shown in Figure 3.5, which was

introduced earlier in Section 3.7.2. On total expansion, the write accesses in statements

S0 and S1 are transformed to 4-dimensional accesses on the corresponding local array

spaces A0 and A1, which have the same size and shape as their iteration domains. Suppose

A is the global unified array space such that A[j] = A j for j = 0,1. Again, consider the

problem of optimizing the storage for a particular compute tile (t y, t x) which writes to

the unified data tile AT = A[t y, t x]. Let A jT = AT[j] represent the data tile written by

the statement S j. The intra-tile conflict sets representing the conflicts (j, x , y) ./ (j′, x ′, y ′)

are specified in Figure 4.5(a). CS0 and CS1 represent the intra-statement conflict sets for

the statements S0 and S1 respectively. CS0,1 represent the inter-statement conflicts which

ensure that a value computed by the statement S1 does not overwrite a value computed

by statement S0 before its last use. Similarly, the inter-statement conflict set CS1,0 avoids

a premature over-write by statement S0 of a value computed by statement S1. Note that

the storage mappings obtained using the successive modulo technique A j[t y, t x , x , y]→

A j[t y, t x , x mod B, y mod B] do not contract storage at all. Also, the contracted arrays for

A0 and A1 cannot be fused into one using the rectangular hull method.

All the intra-statement conflicts of S0 in CS0 can be satisfied at once by the hyperplane

(0,2,−1) with a maximum intra-statement conflict difference of (3B− 3). However, since

all values computed by S1 are live-out, it can be seen that not all of the intra-statement con-

flicts of S1 can be satisfied immediately. Instead, a hyperplane such as (0, 1,0) can be used

to satisfy one of the two intra-statement conflict polyhedra in CS1 with a maximum intra-

statement conflict difference of (B−1). Furthermore, this choice of hyperplanes leads to a

maximum inter-statement conflict difference of 2B−1. Since this exceeds (B−1) by more

than an additive constant factor, our heuristic does not treat any of the inter-statement

conflict polyhedra as satisfied. On the second iteration, after revising the conflict polyhe-

dra, since no intra-statement conflicts of S0 need to be satisfied, the hyperplane found for

it is (0,0, 0) with 0 serving as the maximum intra-statement conflict difference. The hyper-

plane found for S1 is (0,0, 1) with its maximum intra-statement conflict difference being

4.6. Examples 75

CS0 =
��

x = x ′
�

∧
�

y ′ > y
�

∧
�

x , y
�

,
�

x ′, y ′
�

∈ A0T
�

∨
��

x ′ > x
�

∧
�

y ≤ B− 1
�

∧
�

y ≥ B− 2
�

∧
�

x , y
�

,
�

x ′, y ′
�

∈ A0T
�

.

CS1 =
��

x ′ > x
�

∧
�

x , y
�

,
�

x ′, y ′
�

∈ A1T
�

∨
��

x = x ′
�

∧
�

y ′ > y
�

∧
�

x , y
�

,
�

x ′, y ′
�

∈ A1T
�

.

CS0,1 =
��

x = x ′
�

∧
�

y ′− 1≤ y
�

∧
�

x , y
�

∈ A0T ,
�

x ′, y ′
�

. ∈ A1T
�

∨
��

x ′ ≥ x
�

∧
�

y ≤ B− 1
�

∧
�

y ≥ B− 2
�

∧
�

x , y
�

∈ A0T ,
�

x ′, y ′
�

. ∈ A1T
�

.

CS1,0 =
��

x ′ > x
�

∧
�

x , y
�

∈ A1T ,
�

x ′, y ′
�

∈ A0T
�

.

(a) The geometrical representations of these intra-tile conflict sets are shown below.

x

y

(t y, t x , x , y)
y = 0

y = B-1

x = 0 x = B-1

(b) Conflicts in CS0

x

y

(t y, t x , x , y)
y = 0

y = B-1

x = 0 x = B-1

(c) Conflicts in CS1

x

y

(t y, t x , x , y)
y = 0

y = B-1

x = 0 x = B-1

(d) Conflicts in CS0,1

x

y

(t y, t x , x , y)
y = 0

y = B-1

x = 0 x = B-1

(e) Conflicts in CS1,0

Figure 4.5: The conflict sets representing the intra-tile conflicts (j, x , y) ./ (j′, x ′, y ′) in

the global array space A are shown in Figure 4.5(a). Statements S0 and S1 write to the

data tiles A0T and A1T respectively

(B−1). Again, no inter-statement conflict polyhedra can be satisfied as the maximum inter-

statement conflict difference turns out to be (B − 1) which is greater than the maximum

intra-statement conflict difference of S0. Finally, on the third iteration, the hyperplane

76 4. An Integrated Approach to Storage Optimization

(0,0, 0) chosen for both S0 and S1 but with corresponding offsets 0 and 1 satisfy all the

remaining inter-statement conflicts—the resulting contraction modulus is 2. The resulting

intra-tile mappings are S0 : AT[0, x , y] → AT[(2x − y)mod (3B − 2), 0 mod 1,1 mod 2]

and S1 : AT[1, x , y] → AT[x mod B, y mod N , 0 mod 2]. The contracted global array

space can be decoalesced because S0 clearly needs a smaller dimensional array space

which does not fit into the array space of S1. After decoalescing so that S0 and S1

write to arrays A′0 and A′1 respectively and eliminating the constant accesses, the final

mappings obtained are S0 : A0[t y, t x , x , y] → A′0[t y, t x , (2x − y)mod (3B − 2)] and

S1 : A1[t y, t x , x , y]→ A′1[t y, t x , x mod B, y mod N].

4.6.2 Smoothing

The geometric multi-grid algorithm [GV15] for solving partial differential equations con-

sists of different stages such as smoothing, interpolation, and restriction. All of these can

be specified as stencil computations. The smoothing stage consists of repeated applica-

tions of a stencil operation on the given grid. A high-level specification of the computation

can be provided through a DSL such as PolyMage [MVB15]. Figure 4.6 shows a 5-step

smoothing stage implemented using the Jacobi method. Each statement Sk writes to its

local array space Ak which has the same size and shape as the iteration domain of Sk.

The flow dependences are as shown in Figure 4.7(d)). The last use of a value computed

by the statement instance Sk−1(i, j) is in Sk(i + 1, j). Now suppose that all the local ar-

ray spaces are unified into a global array space A on which all the statements operate.

The intra-statement conflict set CSk for the statement Sk can then be specified as shown

in Figure 4.7(a)—the index (k, i, j) in the global array space conflicts with indices of all

values computed later by the statement Sk. Furthermore, the inter-statement conflict set

CSk,k+1, shown in Figure 4.7(b), specifies that the index (k, i, j) conflicts with all the in-

dices lexicographically less than (k+1, i+1, j) (since Sk+1(k+1, i+1, j) is when A(k, i, j)

is last used). A geometric representation of the conflict sets CSk and CSk,k+1 is shown in

Figure 4.7(e). The former consists of the conflicts shown in red and violet, whereas the

conflicts in orange and green represent the inter-statement conflicts.

4.6. Examples 77

1 #define isbound(i,j) (i==0) || (i==(N-1) || (j==0) || (j==(N-1)
2 for (int i=0; i<N; ++i)
3 for (int j=0; j<N: ++j)
4 /*S0*/ A0[i][j] = (!isbound(i,j)) ? a[i][j]+(a[i-1][j]+a[i+1][j]
5 +a[i][j-1]+a[i][j+1] : a[i][j];
6 for (int i=0; i<N; ++i)
7 for (int j=0; j<N: ++j)
8 /*S1*/ A1[i][j] = (!isbound(i,j)) ? A0[i][j]+(A0[i-1][j]+A0[i+1][j]
9 +A0[i][j-1]+A0[i][j+1]) : A0[i][j];

10 for (int i=0; i<N; ++i)
11 for (int j=0; j<N: ++j)
12 /*S2*/ A2[i][j] = (!isbound(i,j)) ? A1[i][j]+(A1[i-1][j]+A1[i+1][j]
13 +A1[i][j-1]+A1[i][j+1]) : A1[i][j];
14 for (int i=0; i<N; ++i)
15 for (int j=0; j<N: ++j)
16 /*S3*/ A3[i][j] = (!isbound(i,j)) ? A2[i][j]+(A2[i-1][j]+A2[i+1][j]
17 +A2[i][j-1]+A2[i][j+1]) : A2[i][j];
18 for (int i=0; i<N; ++i)
19 for (int j=0; j<N: ++j)
20 /*S4*/ A4[i][j] = (!isbound(i,j)) ? A3[i][j]+(A3[i-1][j]+A3[i+1][j]
21 +A3[i][j-1]+A3[i][j+1]) : A3[i][j];

Figure 4.6: Smoothing in multi-grid methods using the Jacobi 2-d stencil

Suppose the successive modulo technique is applied individually for each local array

space separately. Since there is no scope for intra-statement storage reuse, none of them

can then be contracted further. Moreover, the resulting mapping Ak[i, j]→ Ak[i, j] for the

statement Sk implies that Sk and Sk+1 cannot share the rectangular hull of Ak and Ak+1

as the common data structure due to the inter-statement conflict (k, i, j) ./ (k + 1, i, j)

among other ones. Consequently, a graph coloring on the array interference graph which

treats each array Ak as interfering with Ak+1 would lead to a storage mapping Ak[i, j]→

Ak%2[i, j] i.e., the statements alternate between two arrays. The total storage requirement

would then be 2N 2.

Applying our heuristic on the global conflict set CS (shown in Figure 4.7(c)), it can

be seen that no storage hyperplane can satisfy all the intra-statement conflicts at once.

The hyperplane (0, 1,0) satisfies the intra-statement conflicts in red with (N − 1) being

the maximum intra-statement conflict difference. Consequently, our heuristic explores the

space of alternative hyperplanes that not only satisfy the red conflicts but can also satisfy

some inter-statement conflicts with the maximum inter-statement conflict difference ex-

ceeding the maximum intra-statement conflict difference by at most a constant additive

78 4. An Integrated Approach to Storage Optimization

CSk =
��

k, i, j
�

./
�

k, i′, j′
�

|
�

k, i, j
�

,
�

k, i′, j′
�

∈ A∧
��

i < i′
�

∨
��

i = i′
�

∧
�

j < j′
���	

.

(a) The intra-statement conflict set specification for statement Sk for k = 0, 1, . . . , 4

CSk,k+1 =
��

k, i, j
�

./
�

k+ 1, i′, j′
�

|
�

k, i, j
�

,
�

k+ 1, i′, j′
�

∈ A

∧
��

i ≥ i′
�

∨
��

i+ 1= i′
�

∧
�

j > j′
���	

.

(b) The inter-statement conflict set specification for statements Sk and Sk+1 for

k = 0,1, 2,3

CS =
�

∨k=0,1,...,4CSk

�

∨
�

∨k=0,1,...,3CSk,k+1

�

.

(c) The global conflict set specification

Ak[i, j]

j

i

(d) Inter-statement flow dependences:

Ak+1

�

i, j
�

depends on Ak
�

i, j
�

, Ak
�

i− 1, j
�

,

Ak
�

i, j− 1
�

, Ak
�

i+ 1, j
�

, Ak
�

i, j+ 1
�

(t, i, j)

j

t

i

(e) Different colours differentiate conflicts

from different conflict polyhedra.

Figure 4.7: Storage optimization of Jacobi 2-d smoothing in multi-grid methods

factor. Indeed, the storage hyperplanes (0,1, 0), (1, 1,0), (0, 1,0) , (−1,1, 0) and (−1,1, 0)

for the statements S0, S1, S2, S3, S4 respectively, with corresponding offsets 3,0,−1,0 and

−1, can together satisfy the orange and green conflicts as well as satisfy the red ones on

4.7. Generalized Enumerative Heuristic 79

S0 : A[0, i, j]→ A[(i+ 3) mod (N + 2)][j mod N]

S1 : A[1, i, j]→ A[(i+ 1) mod (N + 2)][j mod N]

S2 : A[2, i, j]→ A[(i− 1) mod (N + 2)][j mod N]

S3 : A[3, i, j]→ A[(i− 3) mod (N + 2)][j mod N]

S4 : A[4, i, j]→ A[(i− 5) mod (N + 2)][j mod N]

Figure 4.8: Storage mappings obtained for Jacobi 2-d smoothing (refer Figure 4.7)

their own. They do so with a maximum inter-statement conflict difference of (N + 1).

The remaining conflicts in violet can then be easily satisfied by choosing the hyperplane

(0,0,−1) for all the statements with a zero offset. The resulting storage mapping is as

shown in Figure 4.8. Array decoalescing does not map the statements to different arrays

as all of them write to a common (N + 2)× N array. Note that the resulting storage re-

quirement of (N 2 + 2N) is only marginally greater than the optimal storage requirement

of (N 2 + N) here, which is the maximum number of live values across all points during

execution.

4.7 Generalized Enumerative Heuristic

In Section 3.8, we described an approach for enumerating various modulo storage map-

pings to exploit intra-array reuse. The basic idea behind finding alternative storage map-

pings was to search for alternative storage hyperplanes by introducing suitable constraints.

Similarly, if inter-array reuse opportunities are also factored in, it is possible to generalize

this idea to enumerate various statement-wise storage mappings for a global array space

by looking for alternatives to the set of statement-wise storage hyperplanes found. In other

words, suppose S is the set of conflict polyhedra satisfied by the statement-wise storage

hyperplanes Γ(m)0 ,Γ(m)1 , . . . ,Γ(m)r−1 found at the mth level of storage partitioning using Algo-

rithm 3. Clearly, |S| = ηint ra +ηinter . An alternative collection of storage hyperplanes can

80 4. An Integrated Approach to Storage Optimization

Algorithm 4 Enumerate modulo storage mappings given a non-empty conflict set CS for

the array space A. ~P is the vector of program parameters.

1: procedure ENUMERATE-MODULO-MAPPINGS(A, CS, ~P)

2: Enqueue (CS, ()) to queue Q

3: while Q 6=∅ do

4: (CS′, ~H)← dequeue(Q)

5: m← dim(~H)

6: while CS′ 6=∅ do

7: m← m+ 1

8: ((Γ(m)0 ,Γ(m)1 , . . . ,Γ(m)r−1, e(m)0 , e(m)1 , . . . , e(m)r−1), C)← FIND-NEXT-HYPERPLANES(CS′)

9: Q← FIND-ALTERNATIVE-HYPERPLANES(CS′, C ,Q, ~H,
�

Γ(m)0 ,Γ(m)1 , . . . ,Γ(m)r−1

�

)

10: Revise the conflict set CS′ (refer 4.11) by revising the conflict polyhedra as shown in

(3.7)

11: ~H ← append(~H, (Γ(m)0 ,Γ(m)1 , . . . ,Γ(m)r−1, e(m)0 , e(m)1 , . . . , e(m)r−1))

12: for j← 0 to r − 1 do

13: Let M j be the transformation matrix for statement S j constructed with hyperplanes

Γ(1)j ,Γ(2)j , . . . ,Γ(m)j forming its rows

14: Let ~e j =
�

e(1)j , e(2)j , . . . , e(m)j

�

, the vector of contraction moduli

15: Print the storage mappings characterized by: (M0, M1, . . . , Mr−1,~e0,~e1, . . . ,~er−1)

16: procedure FIND-ALTERNATIVE-HYPERPLANES(CS′, C , Q, ~H,
�

Γ(m)0 ,Γ(m)1 , . . . ,Γ(m)r−1

�

)

17: Add constraint for finding alternatives to hyperplanes
�

Γ(m)0 ,Γ(m)1 , . . . ,Γ(m)r−1

�

as shown in

(4.12) to C

18: Compute lexicographic minimal solution as shown in (4.8) to obtain the hyperplane
�

Γ(m)
′

0 ,Γ(m)
′

1 , . . . ,Γ(m)
′

r−1

�

and the corresponding contraction modulo e(m)
′

0 , e(m)
′

1 , . . . , e(m)
′

r−1

19: if a ny conflict polyhedron in CS′ satisfied by hyperplanes
�

Γ(m)
′

0 ,Γ(m)
′

1 , . . . ,Γ(m)
′

r−1

�

20: Q← FIND-ALTERNATIVE-HYPERPLANES(CS′, C ,Q, ~H,
�

Γ(m)
′

0 ,Γ(m)
′

1 , . . . ,Γ(m)
′

r−1

�

)

21: if same− hyperplanes-not-al read y- f ound(~H,
�

Γ(m)
′

0 ,Γ(m)
′

1 , . . . ,Γ(m)
′

r−1

�

)

22: Revise the conflict set CS′ (refer 4.11) by revising conflict polyhedra as shown in (3.7)

23: Q← enqueue(Q, (CS′, append(~H, (Γ(m)
′

0 ,Γ(m)
′

1 , . . . ,Γ(m)
′

r−1 , e(m)
′

0 , e(m)
′

1 , . . . , e(m)
′

r−1)))

return Q

4.8. Related Work 81

then be found by introducing the following constraint:

ΣKi∈S
�

x1i + x2i
�

< |S|. (4.12)

Notice that this is similar in form to the constraint (3.9). However, the set S here

includes both intra-statement as well as inter-statement conflict polyhedra that were sat-

isfied by the hyperplanes found. A brief summary of the enumerative heuristic based on

this generalization to the global array space is presented in Algorithm 4. The input to

it is the global array space A and the corresponding global conflict set CS. As in Algo-

rithm 2, a queue Q is used to keep track of each ongoing alternative storage partition-

ing of the global array space. For each collection of statement-wise storage hyperplanes

found (line 8), alternatives to the same are found using the procedure FIND-ALTERNATIVE-

HYPERPLANES (line 9). This procedure is similar to the procedure of the same name in

Algorithm 2 — it is merely a generalized version which looks for alternatives to a collec-

tion of statement-wise hyperplanes instead of a single storage hyperplane. Consequently,

we do not illustrate the behaviour of this algorithm with an example. Essentially, if only

one statement is involved, the behaviour of Algorithm 4 would be similar to that of Algo-

rithm 2.

4.8 Related Work

Most storage optimization techniques in the literature are intra-array ones. This includes

those of Wilde and Rajopadhye [WR96], Lefebvre and Feautrier [LF98], Strout et al. [SCFS98],

Quilleré and Rajopadhye [QR00], Thies et al. [TVSA01, TVA07], Darte et al. [DSV05,

ABD07]. Among these, only Lefebvre and Feautrier [LF98] propose an inter-array reuse

technique that can be used in conjunction with other intra-array techniques in a decoupled

and an orthogonal way. On the other hand, our approach here presents the first unified

intra-array and inter-array optimization technique. The example in Figure 1.2 presented

motivation for such a unified approach.

82 4. An Integrated Approach to Storage Optimization

In Chapter 3, we introduced the notion of storage hyperplanes and modeled the intra-

array storage optimization as one of finding the right orientation for the storage hyper-

planes. As seen in the examples that were discussed, this approach yields significant im-

provements in the quality of intra-array storage optimization over previous techniques.

Our work described in this chapter builds on this approach, generalizing it to a global ar-

ray space allowing both intra and inter array storage optimization, and encoding objective

functions for both.

The inter-array compaction heuristic presented by Lefebvre and Feautrier [LF98] is

decoupled from intra-array compaction; it thus misses mappings that can be obtained by

taking a holistic view of all conflicts. De Greef et al. [GCM97b, GCM97a]’s approach works

by looking at a linearization of the array space, and then computing the maximum of the

address differences between memory cells that are simultaneously live at any execution

point. Such an approach misses contraction along non-canonical directions. Furthermore,

the compatibility and mergeability checks for the reuse of contracted arrays are not capable

of exploiting inter-array reuse opportunities such as the one in Figure 1.2.

CHAPTER 5

SMO - A POLYHEDRAL STORAGE

OPTIMIZER

In this chapter, we present the details of the experimental evaluation of the storage op-

timization techniques described in the previous chapters. We implemented these storage

optimization heuristics based on the array partitioning approach into an automatic storage

optimizer, SMO [SMO16], using ISL [Ver10] (version isl 0.12.2) with GLPK (GNU Linear

Programming kit) [GNU10] version 4.45 as the ILP solver. SMO is open source and public

available for download. The input to SMO is a global conflict set specification consist-

ing of both inter-statement and intra-statement conflict polyhedra. The output obtained

is the modulo storage mapping using our technique for each statement. In the scenario

when only one statement is involved, the global conflict set specification defines the set of

conflicts associated with the array space written by the statement.

83

84 5. SMO - A Polyhedral Storage Optimizer

Benchmark Modulo storage mapping Reduction SMO

(approx.) time

produce-consume (Fig.3.1)
baseline A[t mod N , i mod N]

N
2SMO A[(i− t)mod (2N − 1)] 0.17s

blur-interleaved (Fig.3.3(b))
baseline blur x[y mod 3, x mod N]

1.5
SMO blur x[(2x − y)mod (2N + 1)] 0.14s

blur-tiled (Fig.3.6)
baseline A[t y, t x , x mod B, y mod B]

B
3SMO A[t y, t x , (y − 2x)mod (3B− 2)] 0.11s

harris-corner-tiled
baseline sobel[t x , t y, x mod B, y mod B]

B
3SMO sobel[t x , t y, (y − 2x)mod (3B− 2)] 0.12s

unsharp-mask-tiled
baseline A[z, t x , t y, x mod B, y mod B]

B
5SMO A[z, t x , t y, (y − 4x)mod (5B− 4)] 0.82s

LBM-D2Q9 (Fig.3.7)
baseline A[t mod 2, i mod N , j mod N]

2
SMO A[(i− 2t)mod (N + 2), j mod N] 0.61s

LBM-D3Q19
baseline A[t mod 2, i mod N , j mod N , k mod N]

2
SMO A[(i− 2t)mod (N + 2), j mod N , k mod N] 3.32s

LBM-D3Q27
baseline A[t mod 2, i mod N , j mod N , k mod N]

2
SMO A[(i− 2t)mod (N + 2), j mod N , k mod N] 3.33s

diamond-tile (Fig.3.9)
baseline AB[t t mod B, ii mod (2B− 1)]

B
3SMO AB[(t t − 3ii)mod (6B− 5)] 0.44s

stencil-1d-pllgm-tile
baseline AB[t t mod B, ii mod B]

B
3SMO AB[(t t − ii)mod (3B− 2)] 0.29s

stencil-1d-hex-tile
baseline AB[t t mod B, ii mod (3B− 2)]

B
3SMO AB[(−t t + 3ii)mod (9B− 8)] 1.15s

Table 5.1: Storage reduction obtained using our approach (SMO) compared to the baseline

successive modulo technique ([LF98]) with B being the loop blocking factor

5.1. Storage Mappings for Contracting Intra-Array Storage 85

Benchmark Input size Execution time Speedup Storage

baseline smo reduction

blur-interleaved (Fig.3.3(b)) 8192×8192 1.280s 1.815s 0.705× 1.50×

blur-tiled (Fig.3.6) 8192×8192, B=512 0.046s 0.033s 1.389× 170.8×

unsharp-mask-tiled 4096×4096, B=512 0.674s 0.602s 1.120× 102.6×

harris-corner-tiled 8192×8192, B=64 0.716s 0.604s 1.185× 21.56×

LBM-D2Q9 (Fig.3.7) 1024×1024, T=500 14.93s 18.11s 0.824× 2.00×

LBM-D3Q19 200×200×200, T=100 79.21s 83.62s 0.947× 2.00×

LBM-D3Q27 200×200×200, T=100 113.8s 132.1s 0.861× 2.00×

diamond-tile (Fig. 3.9) N=T=8192, B=256 1.489s 1.506s 0.988× 85.44×

stencil-1d-pllgm-tile N=T=8192, B=8 1.584s 1.617s 0.979× 2.91×

Table 5.2: Performance of various benchmarks with the storage mappings shown in Ta-

ble 5.1

86
5.SM

O
-A

PolyhedralStorage
O

ptim
izer

Benchmark Speedup Demand data Demand data % cycles in memory % cycles in LLC access

L2 miss rate L3 miss rate access (LLC misses) (L2 misses that hit in LLC)

blur-interleaved (Fig.3.3(b)) baseline
0.705×

0.0569 0 0 0.0358

smo 0.0043 0 0 0.0031

blur-tiled (Fig.3.6) baseline
1.389×

0.1250 0 0 0.0031

smo 0 0 0 0

unsharp-mask-tiled baseline
1.120×

0 0 0 0

smo 0 0 0 0

harris-corner-tiled baseline
1.185×

0.3975 0 0 0.2351

smo 0.4284 0 0 0.3509

LBM-D2Q9 (Fig.3.7) baseline
0.824×

0.0219 0 0 0.0288

smo 0.0083 0 0 0.0089

LBM-D3Q19 baseline
0.947×

0.0366 0.0309 0.0084 0.0507

smo 0.0412 0.0478 0.0137 0.0520

LBM-D3Q27 baseline
0.861×

0.1390 0.0099 0.0097 0.1850

smo 0.1643 0.0107 0.0104 0.1828

diamond-tile (Fig. 3.9) baseline
0.988×

0.1763 0 0 0.0091

smo 0.1673 0 0 0.0083

stencil-1d-pllgm-tile baseline
0.979×

0.1953 0 0 0.0037

smo 0.2188 0 0 0.0040

Table 5.3: Analysis of the performance of various benchmarks (shown in Table 5.2) using VTune

5.1.Storage
M

appings
for

C
ontracting

Intra-A
rray

Storage
87

Benchmark Speedup DTLB overhead % pipeline slots retired per cycle CPI LEA stalls

blur-interleaved (Fig.3.3(b)) baseline
0.705×

0.0159 0.0289 11.970 0

smo 0.0062 0.0813 3.8828 0

blur-tiled (Fig.3.6) baseline
1.389×

0 0.1816 1.4876 0.0120

smo 0 0.2641 1.0248 0.0161

unsharp-mask-tiled baseline
1.120×

0 0.2209 1.4214 0

smo 0.0004 0.2279 1.3727 0

harris-corner-tiled baseline
1.185×

0.0008 0.2501 1.2204 0.0144

smo 0.0004 0.2724 1.1218 0.0054

LBM-D2Q9 (Fig.3.7) baseline
0.824×

0.0004 0.3943 0.6551 0

smo 0 0.4641 0.5271 0.0457

LBM-D3Q19 baseline
0.947×

0 0.2726 0.9526 0.0000

smo 0 0.3447 0.7261 0.0311

LBM-D3Q27 baseline
0.861×

0.0003 0.3274 0.7931 0.0000

smo 0 0.3523 0.7168 0.0286

diamond-tile (Fig. 3.9) baseline
0.988×

0.0021 0.2087 1.4699 0.0027

smo 0.0036 0.2191 1.4056 0.0051

stencil-1d-pllgm-tile baseline
0.979×

0 0.1110 2.3634 0.0060

smo 0.0000 0.1395 1.9144 0.0108

Table 5.4: Analysis of the performance of various benchmarks (shown in Table 5.2) using VTune (continued from Table 5.3)

88 5. SMO - A Polyhedral Storage Optimizer

5.1 Storage Mappings for Contracting Intra-Array Storage

Table 5.1 shows the storage mappings obtained for various benchmarks, and the time

taken to find them (SMO time) on an Intel Core i5 2540M CPU running at 2.60 GHz. The

stencil benchmarks were optimized for cache locality using the Pluto heuristic [Plu]. The

unsharp-mask and harris-corner kernels were taken from PolyMage [MVB15] while the

LBM benchmarks are due to the work of Pananilath et al. [PAVB15]. Note that in all cases

where we perform tiling, tile sizes are fixed at compile time - the factor B in Table 5.1 and

elsewhere is only to clarify the relationship between storage reduction and tile size.

For an n-dimensional array space, at most n linearly independent storage hyperplanes

need to be found. Finding each storage hyperplane involves Fourier-Motzkin elimination

to get rid of the Farkas’ multipliers. Furthermore, we rely on integer linear programming to

determine a storage hyperplane. Although these techniques are of exponential complexity

in the worst case scenario, the compile time numbers in Table 1 (SMO time) demonstrate

that they are very fast in practice, with most of the storage mappings being found by SMO

in less than a second.

Suppose the tiling hyperplanes for the stencil in Fig. 3.9 were (1,0) and (1,1). Intra-tile

storage optimization for such a parallelogram shaped tile with pipelined start-up would

yield the storage mapping AB[t t, ii]→ AB[(t t−ii)mod (3B−2). Similarly, for a hexagonal

tile [GCH+14], the storage mapping obtained is AB[t t, ii]→ AB[(−t t+3∗ii)mod (9B−8).

Access Expression Simplification The form of our mapping is the same as in any other

successive modulo optimization technique—so we do not introduce any more modulo

expressions than previous ones. In fact, since our technique reduces the dimensionality

of the storage mapping better than previous techniques (for example, blur and Harris

corner detection benchmarks), we will have fewer modulo expressions. Note that any

potential slowdown due to the modulo expression is avoided in several cases due to the

finite bounds on the affine accesses. If an access expression (y − 2x) ranges from say,

−2B + 2 to B − 1, subtracting a base function from the access eliminates the modulus,

e.g. A[(y − 2x)mod 3B − 2] can be converted to A[(y − 2x + 2B − 2)]. Additionally, if

5.1. Storage Mappings for Contracting Intra-Array Storage 89

the modulus is a power of two or just less than it, the modulo expression can be replaced

with a mere bit-wise left shift. The additional arithmetic operations introduced due to the

optimized storage mappings are simple integer ones. Many of the expressions are also

invariant with respect to the innermost loop. Such integer arithmetic is well hidden in the

pipeline, which is good for performance, but obfuscates performance analysis (its effects

in isolation cannot be accurately characterized).

5.1.1 Impact on Performance and Analysis

Table 5.2 gives the execution times of various benchmarks observed when the storage

mappings shown in Table 5.1 were used. For the benchmarks blur-tiled, harris-corner-

tiled, diamond-tile, stencil-1d-pllgm-tile, the tiles were executed in parallel using OpenMP.

All the benchmarks were compiled with Intel C compiler (version 15.0) with flags “-O3

-openmp” and run on all cores of an Intel Xeon E5-2680 dual-socket machine with 8 cores

per socket and a total of 64 GB of non-ECC RAM. The execution times were reproducible

(less than 4% variation). It can be seen that for several benchmarks, the execution times

with our storage mappings were the same if not better than those with mappings obtained

using the successive modulo technique. We also observed that a high reduction factor in

storage (tens of times) does not necessarily translate to a high performance gain. This is

explained by the fact that in case of the tiled benchmarks we use a locality optimized code

as the starting point for memory optimization; the benchmarks stencil-tile and stencil-

1d-pllgm-tile were optimized for locality using the Pluto algorithm. Furthermore, it is

not surprising that a big reduction in memory footprint does not result in a performance

improvement in certain cases. If the code is tiled for the L2 cache, storage optimization

alone may not further reduce stalls due to loads and stores (as cache miss rates would

have already been low). As an analogy, reducing the memory footprint say from 40 GB to

400 MB, an application may still remain compute or memory bandwidth-bound as the case

may be. On the other hand, the application workload will now scale 100× with respect to

data on the same hardware.

To better understand the performance implications of storage optimization using a

90 5. SMO - A Polyhedral Storage Optimizer

modulo mapping, we analyzed all benchmarks using Intel VTune [Int15]. The only dif-

ference between the baseline and smo version of the benchmarks was in the array access

expressions, and array definitions reflecting the reduced storage use. A summary of the

profiling results is presented in Table 5.3 and Table 5.4. The demand data L2 miss rate

is computed as the ratio of the sum of all types of L2 demand data misses to the sum

of L2 demand data requests; similarly, for the demand data L3 miss rate. LEA stalls are

determined as the ratio of the number of cycles with at least one slow LEA (load effective

address) micro-operation being allocated to the number of core cycles when the core is not

in halt state. Zero entries typically stand for a negligible value for the specific metric—due

to sampling used by the profiler. Formulae for all other profiling metrics can be found in

the VTune guide for Intel Xeon Processor E5 family [Int13].

The three benchmarks showing a clear speedup due to storage optimization are blur-

tiled, unsharp-mask-tiled and harris-corner-tiled. Among these, there is a decrease in

demand data L2 miss rate due to storage optimization only for blur-tiled. In case of the

harris-corner-tiled benchmark, the demand data L2 miss rate remains the same, but the

LEA stalls decrease. On the other hand, there is a definite increase in LEA stalls for all

LBM benchmarks contributing to the overall slowdown (close to 15% in case of LBMD2Q9

and LBMD3Q27). The impact of SMO on access expressions complexity can be seen on

benchmarks with 3-d arrays, and this is reflected in LEA stalls. While L2 and L3 miss rates

remain nearly the same for LBMD3Q19 and LBMD3Q27, there is actually a decrease in the

L2 miss rate for LBMD2Q9 due to storage optimization. Overall, the CPI metric improves

(decreases) for all the benchmarks due to storage optimization, although the impact of

SMO on instruction count may sometimes be significant. The blur-interleaved benchmark

shows one of the most drastic reductions in CPI, from 11.97 to 3.88, while a 0.705×

slowdown is incurred by this benchmark. This counter-intuitive result can be attributed to

the code size increase (implied by the big change in CPI) given that all profiling metrics

(L2 miss rate, DTLB overhead) show some improvement due to storage optimization.

5.1.Storage
M

appings
for

C
ontracting

Intra-A
rray

Storage
91

#Processes N=1024,T=10 N=8192,T=10 N=12000,T=10

baseline smo Speedup baseline smo Speedup baseline smo Speedup

3 0.3s 0.368s 0.814 × 19.94s 23.47s 0.849 × 41.26s 52.58s 0.784 ×

5 0.333s 0.383s 0.870 × 20.07s 24.62s 0.815 × 45.59s 54.86s 0.830 ×

6 0.321s 0.388s 0.826 × 19.94s 23.91s 0.833 × 552.1s 53.44s 10.32 ×

7 0.346s 0.402s 0.861 × 21.55s 26.61s 0.810 × 11253s 444.7s 25.30 ×

9 0.390s 0.412s 0.947 × 23.47s 25.88s 0.907 ×

11 0.387s 0.408s 0.95 × 25.77s 26.67s 0.966 ×

13 0.451s 0.432s 1.045 × 350.4s 27.87s 12.57 ×

14 0.444s 0.428s 1.036 × 1226.9s 102.2s 12.00 ×

15 0.453s 0.427s 1.061 × 12974.9s 92.46s 140.3 ×

16 0.457s 0.434s 1.053 ×

Table 5.5: Execution time of multiple instances of LBMD2Q9 being run in a multiprogrammed fashion.

92
5.SM

O
-A

PolyhedralStorage
O

ptim
izer

#Processes N=200,T=10 N=275,T=10 N=350,T=10

baseline smo Speedup baseline smo Speedup baseline smo Speedup

3 12.36s 14.00s 0.883 × 31.34s 29.71s 1.054 × 61.96s 75.66s 0.818 ×

5 13.27s 14.73s 0.901 × 34.49s 33.67s 1.024 × 71.44s 78.40s 0.911 ×

6 12.91s 14.58s 0.885 × 33.37s 32.64s 1.022 × 66.64s 75.81s 0.879 ×

7 14.52s 16.06s 0.904 × 35.87s 36.66s 0.978 × 808.4s 172.8s 4.677 ×

8 13.75s 15.41s 0.891 × 35.27s 34.88s 1.011 × 5841.3s 1511.7s 3.864 ×

9 15.25s 16.40s 0.929 × 39.28s 37.12s 1.058 ×

11 16.95s 18.23s 0.929 × 42.87s 42.28s 1.013 ×

13 18.43s 19.16s 0.961 × 92.05s 45.55s 2.020 ×

15 20.29s 21.03s 0.964 × 1570.7s 148.2s 10.59 ×

16 20.01s 20.61s 0.970 ×

Table 5.6: Execution time of multiple instances of LBMD3Q27 being run in a multiprogrammed fashion.

5.2. Storage Mappings for Exploiting Inter-Array Reuse 93

Multiprogramming Reduction in storage requirement can also potentially increase the

degree of multiprogramming due to a reduction in virtual memory swapping through

greater utilization of resident memory. We ran multiple instances of the LBMD2Q9 and

LBMD3Q27 benchmarks in parallel in order to analyze this impact on multiprogramming.

The time taken for running a different number of instances of each of them for three dif-

ferent input sizes are shown in Table 5.5 and Table 5.6. The performance trends clearly

demonstrate that as the number of benchmark instances increases, the performance of

multiple instances of a storage optimized version continues to match that of running mul-

tiple instances of the corresponding baseline version. On the contrary, the performance

drops sharply for the baseline version when running more instances. Finally, when the

number of processes becomes large enough for disk access to become a dominant factor

in the execution time, we see very high speedups with the storage optimized versions over

corresponding baseline ones.

5.2 Storage Mappings for Exploiting Inter-Array Reuse

Table 5.8 shows the storage mappings obtained for various benchmarks, and the time

taken to find them (SMO time) on an Intel Core i5 2540M CPU running at 2.60 GHz. The

suite of benchmarks includes time-iterated 1-d, 2-d and 3-d stencils (implemented in a

ping-pong fashion as shown in Figure 1.2), tiled versions of blur filter and unsharp mask

image processing kernels [MVB15], and Jacobi smoothing iterations used in Multigrid

methods [GV15]. The overall storage was approximately reduced by a factor of two for all

benchmarks—due to the increase in intra-statement reuse for the unsharp-tiled and blur-

tiled benchmarks and due to improved inter-statement reuse for the rest. The relatively

long time required to analyze the 3-d stencil benchmark is primarily due to the compara-

tively higher dimensionality of its global array space (5 dimensions) together with a total

of 12 conflict polyhedra which need to be analyzed for it.

Although our primary concern in this work has been to optimize storage, we also exam-

ined its performance implications. Table 5.7 compares execution time of the benchmarks

94 5. SMO - A Polyhedral Storage Optimizer

Benchmark Problem size Execution time Speedup

baseline SMO

1-d-stencil-ping-pong N= 524288, T=256 0.411s 0.388s 1.059

2-d-stencil-ping-pong N= 16384, T=16 39.65s 33.84s 1.172

2-d-stencil-ping-pong N= 32768, T=8 85.07s 69.27s 1.228

3-d-stencil-ping-pong N=128, T=512 22.70s 22.96s 0.988

3-d-stencil-ping-pong N=256, T=32 11.17s 12.11s 0.922

3-d-stencil-ping-pong N=512, T=32 88.71s 114.0s 0.778

jacobi-2d-smoothing N=4096, 3 steps 2.455s 2.247s 1.092

jacobi-2d-smoothing N=4096, 5 steps 2.896s 2.706s 1.070

jacobi-2d-smoothing N=4096, 9 steps 3.820s 3.758s 1.016

unsharp-tiled N=4096, B=256 1.337s 0.679s 1.969

blur-tiled N=8192, T=512 0.046s 0.044s 1.045

Table 5.7: Benchmark performance with the storage mappings of Table 5.8

5.2.Storage
M

appings
for

Exploiting
Inter-A

rray
R

euse
95

Benchmark Modulo storage mapping Reduction SMO

baseline SMO (approx.) time

1-d stencil (Fig.4.1)
S0 : A0[t mod 1, i mod N] A[(i− t)mod (N + 1)]

2 0.055s
S1 : A1[t mod 1, i mod N] A[(i− t)mod (N + 1)]

2-d stencil
S0 : A0[t mod 1, i mod N , j mod N] A[(i− 3t + 1)mod (N + 2), j mod N]

2 0.633s
S1 : A1[t mod 1, i mod N , j mod N] A[(i− 3t)mod (N + 2), j mod N]

3-d stencil
S0 : A0[t mod 1, i mod N , j mod N , k mod N] A[(i− 3t)mod (N + 2), j mod N , k mod N]

2 22.57s
S1 : A1[t mod 1, i mod N , j mod N , k mod N] A[(i− 3t − 1)mod (N + 2), j mod N , k mod N]

jacobi-2d-smoothing (Fig.4.6) Sk : Ak%2[i mod N , j mod N] A[(i+ 3− 2k)mod (N + 2), j mod N] 2 4.846s

blur-tiled (Fig.3.6)
S0 : A0[t y, t x , x mod B, y mod B] A′0[t y, t x , (y − 2x)mod (3B− 2)] B

3 0.738s
S1 : A1[t y, t x , x mod B, y mod B] A′1[t y, t x , x mod B, y mod B] 1

unsharp-tiled
S0 : A0[z, t y, t x , x mod B, y mod B] A′0[z, t y, t x , (y − 4x)mod (5B− 4)] B

5 1.013s
S1 : A1[z, t y, t x , x mod B, y mod B] A′1[z, t y, t x ,−y mod B, x mod B] 1

Table 5.8: Storage reduction obtained using our approach (SMO) compared to the baseline (successive modulo [LF98] followed

by rectangular hull), where B is the loop blocking factor

96 5. SMO - A Polyhedral Storage Optimizer

optimized for storage. The baseline version was optimized using the successive modulo

technique followed by the rectangular hull method. For the benchmarks blur-tiled and

unsharp-tiled, the tiles were executed in parallel using OpenMP. The benchmarks were

compiled with GCC (version 4.8.1) with flags “-O3 -fopenmp” and run on all cores of an

Intel Xeon E5-2680 v2 dual-socket machine with 8 cores per socket and a total of 64 GB

of DDR3 1600 MHz RAM. The performance numbers presented in Table 5.7 are medians

of five trial runs. As can be seen, there are improvements ranging from 5.9% to 96.9%

for the selected benchmarks. Except for the 3-d stencil, we did not notice any significant

slowdown in performance. We believe this slowdown is due to the more complex modulo

mapping, the overhead from which is relatively higher in the case of a 3-d stencil due to a

higher number of array accesses.

5.3 Storage Mappings Using Enumerative Heuristic

The storage mappings enumerated using Algorithm 2 for various benchmarks are shown

in Table. 5.9 and Table 5.10. For each benchmark, we only list up to five different storage

mappings that were obtained. Benchmarks with higher dimensionality such as LBMD3Q19

typically had a lot more, although we noticed that some of the later storage mappings

enumerated were merely permutations of the earlier ones. It can be seen that searching

for alternative storage mappings can be beneficial in some cases. For example, we were

thus able to obtain solutions which provide a better storage reduction factor of B
2

for the

diamond-tile and stencil-1d-hex-tile benchmarks. Furthermore, it is interesting to note

that there are alternative storage mappings for the LBM benchmarks which also lead to

a storage reduction factor of two. In such cases, where there are multiple storage map-

pings with same storage reduction factors, it may be beneficial to choose a mapping with

relatively simpler access expressions. Due to the exploratory nature of the enumerative

heuristic, it is possible to find alternative storage mappings with storage requirements

greater than that obtained by choosing the canonical hyperplanes e.g. consider the third

storage mapping obtained for stencil-1d-pllgm-tile, shown in Table 5.10, which is worse

5.3. Storage Mappings Using Enumerative Heuristic 97

than the baseline storage requirement by a factor of two. Such alternative solutions, in

fact, justify the selection criteria for storage hyperplanes used in Algorithm 1.

We applied the enumerative approach using Algorithm 4 for the benchmarks with inter-

array reuse opportunities as well. However, better storage reductions were not obtained

— the solutions found using Algorithm 3 were already exploiting the inter-array reuse

opportunities quite well.

98
5.SM

O
-A

PolyhedralStorage
O

ptim
izer

Benchmark Modulo storage mappings Reduction factor

baseline SMO (approx.)

produce-consume (Fig.3.1)

A[t mod N , i mod N] A[(i− t)mod (2N − 1) N
2

A[i mod N , t mod N] 1

A[t mod N , i mod N] 1

blur-interleaved (Fig.3.3(b))

blur x[y mod 3, x mod N] blur x[(2x − y)mod (2N + 1)] 3
2

blur x[x mod N , y mod 3] 1

blur x[y mod 3, x mod N] 1

blur-tiled (Fig.3.6)

A[t y, t x , x mod B, y mod B] A[t y, t x , (y − 2x)mod (3B− 2)] B
3

A[t y, t x , y mod B, x mod B] 1

A[t y, t x , x mod B, y mod B] 1

harris-corner-tiled

sobel[t x , t y, x mod B, y mod B] sobel[t x , t y, (y − 2x)mod (3B− 2)] B
3

sobel[t x , t y, y mod B, x mod B] 1

sobel[t x , t y, x mod B, y mod B] 1

unsharp-mask-tiled

A[z, t x , t y, x mod B, y mod B] A[z, t x , t y, (y − 4x)mod (5B− 4)] B
5

A[z, t x , t y,−y mod B,−x mod B] 1

A[z, t x , t y, x mod B,−y mod B] 1

LBM-D2Q9 (Fig.3.7)

A[t mod 2, i mod N , j mod N] A[(i− 2t)mod (N + 2), j mod N] 2

A[−t mod 2,−i mod N , j mod N] 1

A[i mod N , t mod 2, j mod N] 1

A[(−t + j)mod (N + 1), (t − i)mod (N + 1)] 2

A[(−t + i)mod (N + 1), (−t + j)mod (N + 1)] 2

Table 5.9: Various modulo storage mappings enumerated using Algorithm 2 compared to the baseline (successive mod-

ulo [LF98], where B is the loop blocking factor

5.3.Storage
M

appings
U

sing
Enum

erative
H

euristic
99

Benchmark Modulo storage mappings Reduction factor

baseline SMO (approx.)

LBM-D3Q19

A[t mod 2, i mod N , j mod N , k mod N] A[(i− 2t)mod (N + 2), j mod N , k mod N] 2

A[−t mod 2, k mod N , j mod N ,−i mod N] 1

A[−i mod N ,−t mod 2, k mod N ,− j mod N] 1

A[(2t − j)mod (N + 2), (−t + i)mod (N + 1),−k mod N] 2

A[− j mod N , (−2t + i)mod (N + 2),−k mod N] 2

diamond-tile (Fig.3.9)

AB[t t mod B, ii mod (2B− 1)] AB[(t t − 3ii)mod (6B− 5)] B
3

AB[−t t mod (B), ii mod (2B− 1)] 1

AB[−ii mod (2B− 1), t t mod 2] B
2

AB[(−t t + ii)mod (2B− 1), ii mod B] 1

stencil-1d-pllgm-tile

AB[t t mod B, ii mod B] AB[(ii − t t)mod (3B− 2) B
3

AB[−t t mod B,−ii mod B] 1

AB[−ii mod (2B− 1),−t t mod B] 1
2

AB[(−t t − ii)mod B, t t mod B] 1

AB[(−t t − ii)mod B, ii mod B] 1

stencil-1d-hex-tile
AB[t t mod B, ii mod (3B− 2)] AB[(t t − 3ii)mod (9B− 8)] B

3

AB[−t t mod B,−ii mod (3B− 2)] 1

AB[−ii mod (3B− 2),−t t mod 2] B
2

AB[(t t − ii)mod (3B− 2),−t t mod B] 1

Table 5.10: Various modulo storage mappings enumerated using Algorithm 2 compared to the baseline (successive mod-

ulo [LF98], where B is the loop blocking factor

CHAPTER 6

POLYHEDRAL COMPILATION OF A

GRAPHICAL DATAFLOW LANGUAGE

In this chapter, we tackle the problem of applying existing polyhedral techniques for trans-

formation of graphical dataflow programs. Specifically, we deal with the problem of ex-

tracting the polyhedral representation of a given graphical dataflow program as well as

that of synthesizing the latter given its equivalent polyhedral representation.

6.1 Extracting the Polyhedral Representation

The polyhedral representation of a SCoP typically consists of an abstract mathematical

description of the iteration domain, schedule and array accesses for each statement. The

array accesses are also classified as either read or write accesses. Each of these are ex-

pressed as affine functions of the enclosing loop iterators and symbolic constants.

101

102 6. Polyhedral Compilation Of A Graphical Dataflow Language

6.1.1 Challenges

A graphical dataflow program has no notion of a statement. The program is a collection

of nodes that represent specific computations, with data flowing along edges that connect

one node to another. Referential transparency ensures that each edge could be associated

with its own distinct memory location. Generally, copy-avoidance strategies are used to

maximize inplaceness of output and input data. However, the exact memory allocation de-

pends on the specific strategy used. Additionally, the problem of copy-avoidance is closely

tied with the problem of scheduling the computation nodes. In the matmul program (Fig-

ure 1), consider the array write u and the array read r that share the same data source

(say, v). If no array copy is to be created, the read must be scheduled ahead of the write,

i.e., u <s r is not consistent with (v, w1) (w1, u) ∧ (w1, u) (u, w2) ∧ (v, w1) (w1,

r). If the write is scheduled first, the read must work on a copy of the array as the write is

likely to overwrite the array input. Abu-Mahmeed et al. [AMMB+09] have looked into the

problem of scheduling to maximize the inplaceness of aggregate data. To summarize, the

main challenges in the extraction of the polyhedral representation for a graphical dataflow

program are as follows:

1. A graphical dataflow program cannot be viewed as a sequence of statements exe-

cuted one after the other.

2. While the access expressions could be analyzed just like parse trees, it is difficult

to relate the access to a particular array definition as the exact memory allocation

depends on the specific copy-avoidance strategy used.

3. The actual execution schedule of the computation nodes determined depends on the

copy-avoidance decisions.

A trivial polyhedral representation can be extracted by treating each node of a graphi-

cal data flow program as a statement analogue while making the conservative assumption

that data is copied over each edge. As most compilers make use of copy-avoidance strate-

gies, such a polyhedral representation most certainly over-estimates the amount of data

6.1. Extracting the Polyhedral Representation 103

space required. This also results in an over-estimation of the computation e.g. an ar-

ray copy. Therefore, the problem of polyhedral transformation in such a representation

begins with a serious limitation in terms of dataspace and computation over-estimation.

In essence, extraction of a polyhedral representation of a dataflow program part cannot

negate the copy-avoidance optimizations. The inplaceness opportunities in the dataflow

program must be factored into the analysis.

6.1.2 Static Control Dataflow Diagram (SCoD)

A SCoP is defined as a maximal set of consecutive statements without while loops, where

loop bounds and conditionals may only depend on invariants within this set of statements.

Analogous to this, we now characterize a canonical graphical dataflow program, a Static

Control Dataflow Diagram (SCoD), which lends itself well to existing polyhedral tech-

niques for program transformation. The reasoning behind each individual characteristic is

provided later.

1. It is a maximal dataflow diagram without constructs for loops that are not countable,

where the countable loop bounds and conditionals, in any diagram, only depend on

parameters that are invariant for that diagram. Nodes in the SCoD (and its nested

diagrams) must be functional, without causing run-time side-effects or relying on

any run-time state.

2. The only array primitives that feature as nodes in a SCoD and its nested diagrams are

those which read an array element or write to an array element. More importantly,

primitives that output array data that cannot be inplace to an input array data cannot

be present in the diagrams.

3. For an array data source in any diagram, (v1, w), there exists at most one node v2

such that (v1, w) (w, v2) ∧ v2×w i.e., v2 performs a destructive update.

4. Data flowing into a loop in any diagram is either loop-invariant data or loop-carried

scalar data or loop-carried array data that has an associated can-inplace path through

104 6. Polyhedral Compilation Of A Graphical Dataflow Language

the loop body, which creates the loop-carried dependence, i.e., loop input x ∈ I ⇒

x ∈ Inv ∨ (x ∈ ICar ∧ (isScalarType(x, wx) ∨ (isArrayType(x, wx) ∧ (x, wx) (wy ,

y)))) where y = lcd−1(x), wx and wy the input and output wires.

5. In any diagram, there is no can-inplace path from a loop-invariant data input to the

loop-carried data input of an inner loop or to the array input of an array element

write node, i.e., in any DAG, G = (N, E) that corresponds to the body of a loop, if

(v1, w1) is the loop invariant input, then there does not exist any edge (w2, v2) such

that (v1, w1) (w2, v2) ∧ v2Xw2.

The first characteristic is closely tied with the characterization of a SCoP. The rest of

the characterization specifies a canonical form of dataflow diagram which has can-inplace

relations that facilitate polyhedral extraction. As explained earlier, a naive implementa-

tion of a dataflow language could write each new output into a new memory location.

The question of whether a particular wire vertex gets a new memory allocation or not

depends on the actual copy-avoidance strategy employed by the compiler. The problem

of extracting the polyhedral representation of an arbitrary dataflow diagram, therefore

depends on the copy-avoidance strategy. In order to make the polyhedral extraction in-

dependent of it, we canonicalize the dataflow in a given diagram in accordance with the

above characteristics.

An operation such as appending an element to an input array data is a perfectly valid

dataflow operation. Clearly, the output array cannot be inplace to the input array. (2)

ensures that such array operations are disallowed. Furthermore, it is possible in a dataflow

program to overwrite multiple, distinct copies of the same array data. In such a case, a

copy-avoidance strategy would inplace only one of the copies with the original data and

the rest of them would be separate copies of data. (3) precludes such a scenario. It

is important to note that it however, still allows multiple writes. (4) ensures that loop-

carried dependence involving array data is tied to a single array data source. Assuming

the absence of (5), data flowing from loop-invariant source vertex to a loop-carried input

of an inner loop would necessitate a copy because the source data would have a pending

read in subsequent iterations of the outer loop.

6.1. Extracting the Polyhedral Representation 105

Theorem 1. In any diagram of the SCoD, G = (V, E), there exists a schedule <s of the

computation nodes V, which is consistent with the conjunction of all possible can-inplace

relations,
∧

x, y, z ∈ V ((x, y) (y, z)), where isArrayType(x, y) ∧ isArrayType(y, z) holds.

Proof. Consider an array data source (v, w) in G with v ∈ I. If v1, v2,. . . ,vn are the nodes that

consume the array data, then in accordance with characteristic (3), there is at most one

node vi such that (v, w) (w, vi) ∧ vi×w. Without any loss of generality, we can assume

that i = n. This implies that any valid schedule <s where v1 <s v2 <s v3 . . . <s vn holds

is consistent with
∧n

i=1 ((v, w) (w, vi)). Similar scheduling constraints can be inferred

for the nodes that consume the array data produced by vn and so on, thereby ensuring

that all the can-inplace relations are satisfied for array dataflow. The new constraints

inferred cannot contradict an existing constraint as the graph is acyclic. Therefore, any

valid schedule <s where all the inferred scheduling constraints are satisfied is consistent

with maximum array inplaceness in the diagram.

Essentially, in a SCoD, it is possible to schedule the computation nodes such that no

new memory allocation need be performed for any array data inside the SCoD, i.e., all the

array data consumed inside the SCoD will then have an inplace source that ultimately lies

outside the SCoD.

Lemma 2. In any diagram of the SCoD, G = (V, E), for any sink vertex t ∈ O, that has array

data flowing into it, a can-inplace path exists from a source vertex s ∈ I to t.

Proof. There must exist a node v1 which produces the array data flowing into t through

wire w. So, (v1, w) (w, t) holds. In accordance with the model, v1 can either be an array

write node or a loop. In either case, there must exist a node v2 which produces the array

106 6. Polyhedral Compilation Of A Graphical Dataflow Language

data flowing into v1 and so on until a source vertex s is encountered. The path traversed

backwards from t to s clearly constitutes a can-inplace path.

6.1.3 A multi-dimensional schedule of compute-dags

A compute-dag, T = (VT , ET) in a diagram G = (V, E), is a sub-graph of G where there

exists a node, r ∈ VT such that for every other x ∈ VT there exists a path from x to r in

T (the node r will hereafter be referred to as the root node). As it is possible to pick

inplace opportunities such that no array data need be copied on any edge in the SCoD,

any diagram in the SCoD can be viewed as a sequence of computations that write on the

incoming array data. Instead of statements, compute-dags, which are essentially dags of

computation nodes can be identified. Consider an array write node or a loop node, both

of which can overwrite an input array. Starting with a dag that is just this node as the

root, the compute-dag can be built recursively by adding nodes which produce data that

flows into any of the nodes in the dag. Such a recursive sweep of the graph stops on

encountering another array write or loop node. However, while identifying compute-dags

in a diagram, it is necessary to account for all the data produced by the nodes in the

diagram.

Theorem 2. In any diagram of the SCoD, G = (V, E), for every edge (x, y) ∈ E where x is a

computation node, there exists a compute-dag Ti = (Vi, Ei) in the set Σ′ = {T1, T2,. . . ,Tm} of

compute-dags rooted at array write or loop nodes, such that x ∈ Vi iff only array data flows

out of every diagram.

Proof. In accordance with Lemma 1, for any sink vertex t ∈ O, with array data flowing

into it, there exists a can-inplace path ps→t = {s,. . . , v, w, t} from a source vertex s to t.

Also, every node x, which is not dead-code, must have a path qx→t j
= {x, y, . . . , v j, w j, t j}

to at least one sink vertex t j ∈ O. If only array data flows into every sink vertex, consider

6.1. Extracting the Polyhedral Representation 107

(a) Treating scalar loop-carried data as

single-element array

(b) Scheduling compute-dags rooted at

v1 and v2 in total order is not possible

Figure 6.1: Single-element arrays and contradiction in schedule of compute-dags.

the first vertex z at which the path qx→t j
overlaps with ps j→t j

. z must either be a loop-

node or an array write node. In either case x must be part of a compute-dag rooted at

z (in the former case, if x 6= z, notice also that the data flowing along (x, y) must be the

intermediate result of a computation that produces the loop-invariant data for the loop z).

On the other hand, if scalar data can flow into a sink vertex t, clearly, the path from node

x to t is not guaranteed to have either an array write node or a loop node. Consequently,

the node x is not guaranteed to be part of any compute-dag. Likewise, if loops can have

scalar loop-carried data since a scalar loop-carried output is represented as a sink vertex

in the loop body DAG.

In order to address the consequences of Theorem 2, it is necessary to treat scalar data

flowing out of the diagram as a single-element array. This results in a compute-dag that

accounts for the scalar dataflow. Likewise, loop-carried scalar data must also be treated

as single-element array. The dataflow into the loop-carried input is treated as a write to

the array resulting in a corresponding compute-dag (refer Figure 6.1(a)). (Hereafter, we

assume in the following discussion, that scalar data flowing out of a diagram and loop-

carried scalar data are treated specially in this way as single-element arrays).

Each diagram in a SCoD is analyzed for compute-dags, starting from the top-level

diagram. Suppose θ is the scheduling function. At each diagram level, d, the set of roots

of the compute-dags in Σ′ = {T1, T2,. . . ,Tm} are ordered as follows:

• If data produced by a root node n1 is consumed by root node n2, then θ d
n1
≺ θ d

n2
.

108 6. Polyhedral Compilation Of A Graphical Dataflow Language

• In accordance with Theorem 1, if there is an array write in a compute-dag rooted at

n1 and an array read in a compute-dag rooted at n2, both of which are dependent

on the same array data source, then θ d
n1
� θ d

n2
. Scheduling n1 ahead of n2 in the

polyhedral representation would be unsafe. Such a schedule would only be possible

if n2 were to read a copy of the input array, allowing n1 to overwrite the input array.

The safe schedule ensures that an array copy is not required.

• If neither of the above hold for the two root nodes, either θ d
n1
� θ d

n2
or θ d

n1
≺ θ d

n2

should hold true.

Each diagram in the diagram hierarchy of the SCoD contributes to a dimension in the

global schedule. Each loop encountered introduces an additional dimension. The total

order on the compute-dag roots in any diagram determines the time value at which each

compute-dag can be scheduled in that dimension. The global schedule is obtained by

appending its time value in the owning diagram to the schedule of the owning loop, if any,

together with the loop dimension.

Apart from ensuring that all the data produced by the nodes in a diagram are accounted

for, it must also be possible to schedule the compute-dag roots in a total order.

Theorem 3. In any diagram of the SCoD, G = (V, E), it is possible to schedule the set of roots

of the compute-dags in Σ′ = {T1, T2,. . . ,Tm} in a total order if for every path pv1→v2
between a

pair of roots, v1 and v2, there does not exist an array read node, r in the compute-dag T(v2),

such that r and v1 share the same data source (x, w) with v1×w and a path qr→v2
exists that

does not include v1 on it.

Proof. Consider a pair of root nodes v1 and v2 (refer Figure 6.1(b)). In accordance with

the scheduling constraints specified above, θ d
v1
≺ θ d

v2
if a path pv1→v2

exists in G. This

scheduling order is contradicted only if for some reason θ d
v1
� θ d

v2
must hold, which can

happen only if the compute-dag T(v2) contains a node that must be scheduled ahead of v1,

6.1. Extracting the Polyhedral Representation 109

i.e., an array read node that shares the same source as v1. If such a node does not exist,

then the contradiction never arises leading to a total ordering of the compute-dag roots.

Similarly, there is no contradiction in schedule order if a path pv1→v2
does not exist.

In order to address the consequence of Theorem 3, while building compute-dag rooted

at v2, it is also necessary to stop on encountering an array read node r when there is a

node v1 with the same array source, overwriting the incoming array, such that there exists

a path from r to v2 which does not include v1. A separate compute-dag rooted at such an

array read must be identified, thereby breaking the compute-dag that would have been

identified otherwise (rooted at v2) into two different dags.

The set of actual statement analogues is Σ = {T1, T2,. . . ,Tn} such that the root(Ti)

for any Ti ∈ Σ′ is not a loop. Algorithm 5 provides a procedure for identifying the set

of statement analogues in a given dataflow graph G = (V, E) of a particular diagram. It

is possible for two statement analogues to have common sub-expressions. However, the

nodes in a SCoD are functional, making the common sub-expressions also so.

Analysis of iteration domains. We assume that loop normalization has been done,

i.e., all for-loops have a unit stride and a lower bound of zero. Analyzing the iteration

domain of a for loop only involves the analysis of the dataflow computation tree that

computes the upper bound of the for loop. This analysis is very similar to parsing an

expression tree. Symbolic constants are identified as scalar data sources that lie outside

the SCoD. Loop iterators and constant data sources are explicitly represented as nodes in

our model.

Analysis of array accesses. The access expression trees for the array reads and array

writes which are present in the compute-dags of the statement analogues are analyzed to

obtain the access functions. The most important problem of tying the array access to a

particular memory allocation is resolved easily. Due to a carefully determined scheduling

order, which schedules array reads ahead of an array write having the same source, all

the accesses can be uniquely associated with array data sources that lie outside the SCoD.

This is regardless of the actual copy-avoidance strategy that may be used. Additionally,

the scalar data produced by an array read that is the root of its own compute-dag and

110 6. Polyhedral Compilation Of A Graphical Dataflow Language

Algorithm 5 identify-compute-dags(G = (V, E))
Require: Treat scalar data flowing out of diagram as single element arrays

Require: Loop-invariant computations have not been code-motioned out into an enclosing dia-

gram

1: procedure IDENTIFY-COMPUTE-DAGS(G = (V, E))

2: Σ = ∅

3: for all n ∈ V | isArrayWriter(n) ∧ !isloop(n) do

4: Σ =Σ ∪ build-compute-dag(n, G) . compute-dag from G, with root n

5: for all n ∈ V | root-candidate[n] do

6: Σ = Σ ∪ build-compute-dag(n, G)

7: return Σ

8: procedure BUILD-COMPUTE-DAG(n, G = (V, E))

9: VT = {n}, ET =∅

10: while (x, y) = get-new-node-for-dag(n, T = (VT , ET), G) do

11: VT = VT ∪ x , ET = ET ∪ {(x , y)}

12: return (VT , ET)

13: procedure GET-NEW-NODE-FOR-DAG(n, T = (VT , ET), G = (V, E))

14: for each (x , y) ∈ E do

15: if (x, y) 6∈ ET ∧ y ∈ VT∧ !isArrayWriter(x) ∧ !isloop(x)

16: if isArrayReader(x)

17: z = get-array-write-off-same-source-if-any(x)

18: if there exists a path pz→n

19: root-candidate[x] = true

20: continue

21: return (x, y)

22: return ∅

a node in another compute-dag is treated as a single-element array, thereby encoding

the corresponding dependence in the array accesses of both the compute-dags. So, each

6.2. Code Synthesis 111

statement analogue has exactly one write access.

6.2 Code Synthesis

A polyhedral optimizer can be used to perform the required program transformations on

the polyhedral representation of the SCoD. We now consider the problem of synthesizing

a SCoD given its equivalent polyhedral representation.

6.2.1 Input

The input polyhedral representation must capture the iteration domain, access and schedul-

ing information of the statement analogues i.e., the set Σ = {T1, T2, . . . , Tn} of compute-

dags, which are also available as input. Each compute-dag, derived perhaps from an

earlier polyhedral extraction phase, has exactly one array write node, which is the root of

the dag.

The polyhedral representation must have identity schedules. Any polyhedral repre-

sentation with non-identity schedules can be converted to one with identity schedules by

performing code generation and extracting the generated code again into the polyhedral

representation. In this manner, scheduling information gets into statement domains and

the schedule extracted from the generated code is an identity one. Once an equivalent

polyhedral representation in this form has been obtained, the approach described in the

rest of this section is used to synthesize a SCoD.

6.2.2 Synthesizing a Dataflow Diagram

The pseudo-code for synthesizing a dataflow diagram is presented in Algorithms 7 and

6. The statement analogues are processed in their global schedule order (line 6.5). The

iteration domain and scheduling information of a statement analogue are together used

to create the surrounding loop-nest (line 6.7). Lower and upper bounds are inferred for

each loop iterator. In case the for-loop is a normalized for-loop as in our abstract model,

112 6. Polyhedral Compilation Of A Graphical Dataflow Language

Algorithm 6 Synthesize-SCoD()

1: Convention: If s represents a source vertex, the paired sink is s′

2: procedure SYNTHESIZE-SCOD()

3: Let G0 be the DAG of the top level diagram, G0 = (∅,∅)

4: create-source-vertex-for-each-global-parameter(G0)

5: for each statement analogue, T in global schedule order do

6: Read domain (D), identity schedule (θ) and access (A) matrices

7: l = create-or-get-loop-nest(G0, D, θ) . l, innermost loop

8: add-compute-dag(l, T, G0)

9: for each (variable, read access) pair (v, a) in A do

10: (s0, s′0) = create-source-and-sink-vertices-if-none(v, G0)

11: create-or-get-dataflow(s0, s′0, l, G0, READ)

12: array-read-node-access(a, T, l, G0) . node reads data flowing into l through

loop-invariant input or data flowing into the loop carried output if it exists. Create array index

expression tree using a

13: (v, a) = get-variable-write-access-pair(A)

14: (s0, s′0) = create-source-and-sink-vertices-if-none(v, G0)

15: create-or-get-dataflow(s0, s′0, l, G0, WRITE)

16: insert-array-write-node(a, T, l, G0) . node is added to flow path so that it overwrites

the data flowing into the loop-carried output of l. Create array index expression tree

17: create-dataflow-from-parameters-and-iterators(c, G0)

18: return G0

the actual upper bound will be a difference of the minimum and maximum of the inferred

upper and lower bounds plus one. Built-in primitives for various operations such as max,

min, floor, ceil etc. may be used to set up the loop-control. Note that if the required loop-

nest has been created already for a statement analogue scheduled earlier, it need not be

created again. The compute-dag is then added to the dataflow graph of the enclosing loop

(line 6.8).

Inherent parallelism – the factor to consider. Dataflow programs are inherently par-

allel. A computation node is ready to be fired for execution as soon as all its inputs are

6.2. Code Synthesis 113

Algorithm 7 Creation of loop-carried and loop-invariant dataflow

1: procedure CREATE-OR-GET-DATAFLOW(s0, s′0, lm, G0, access− t ype)

2: {l1,...,lm} = get-enclosing-loops(lm) . {G1,...,Gm} be their DAGs

3: sources = get-inflow-if-any(s0, lm, G0)

4: c = max i | i ∈ {0, 1,...,|sources|} and si ∈ ICar[li] for i > 0

5: if access-type == WRITE

6: if c < m

7: find v | (v, w), (w, s′c) ⊂ E|c|

8: create flow path from v to s′c through loop lm via loop-carried inputs/outputs

(transforming sc+1,...,s|sources| into loop-carried inputs)

9: replace flow path (v, w, s′c) with this new flow path

10: else if |sources|< m . must be a read access

11: if c == |sources| . use data overwritten in outer loop

12: find v | (v, w), (w, s′c) ⊂ E|c|

13: else v = s|sources| . extend loop-invariant flow

14: create a flow path through loop-invariant inputs from v to lm

15: return

16: procedure GET-INFLOW-IF-ANY(s0, lm, G0)

17: {l1,...,lm} = get-enclosing-loops(lm) . l1 outermost

18: s = s0, H = G, U = V, F = E, sources = ∅

19: for i← 1, m do

20: wi = wire carrying data from s

21: if ∃ w ∈ U | (w, li) ∈ F ∧ (s, wi) (w, li)

22: H = DAG that describes body of loop li

23: s = source vertex in H that corresponds to loop input (w, li)

24: sources = append s to the sources list

25: else break

26: return sources

114 6. Polyhedral Compilation Of A Graphical Dataflow Language

available. It is essential to exploit this inherent parallelism during code synthesis. In order

to infer such parallelism and exploit it, we reason in terms of coalesced dependences. A

coalesced dependence is the same as a regular data dependence except that two accesses

are considered to be in conflict if they even access the same variable (potentially an ag-

gregate data type), as opposed to the same location in the aggregate data. For example,

an array access that writes to odd locations does not conflict with another that reads from

even locations. However, a coalesced dependence exists between the two. Analogous to

regular data dependences, we now also use the terms flow, anti, and output coalesced

dependences.

A unique source-sink vertex pair (s0, s′0) is created in the top-level DAG, G0, of the top-

level diagram for each variable v whose access is described in the access matrices (lines

6.10, 6.14). A dataflow path is also created from s0 to s′0. The problem of synthesizing

a dataflow diagram is essentially a problem of synthesizing the dependences between

the given set Σ = {T1, T2, . . . , Tn} of compute-dags in terms of edges that will connect

them together. Specifically, as all the dependences involve array variables (may be single-

element), these interconnecting edges represent the dataflow between array read or write

nodes in the compute-dags, through intervening loops. Consider set of array write nodes U

= {u1, u2, . . . , un}, which correspond to write accesses on the same variables in a particular

time dimension such that ui is scheduled ahead of u j for all i < j (i.e., the corresponding

compute-dags).

Theorem 4. All coalesced output dependences on a variable in the polyhedral representation

are satisfied by a synthesized dataflow diagram if in any diagram, all array write nodes

u1, u2, . . . , un corresponding to write accesses to that variable lie on the same can-inplace path

pu1→un
.

Proof. Suppose all the nodes in U = {u1, u2, . . . , un} are scheduled in the outermost dia-

gram. A coalesced output dependence exists between any pair of write nodes scheduled in

6.2. Code Synthesis 115

this diagram, thereby defining a total ordering on the set U. Therefore, all the correspond-

ing array write nodes must be inserted along the can-inplace path ps0→s′0
. Now consider a

write node u scheduled in an inner loop. A coalesced output dependence exists between u

and any array write node ui ∈ U. This is ensured by inserting the inner loop along the path

ps0→s′0
, in accordance with its schedule order relative to the other write nodes on the path.

The incoming and outgoing edges of the loop node on the can-inplace path must corre-

spond to the loop-carried input and its paired output, which in turn serve as the source

and sink vertices in the DAG of the loop body.

Theorem 5. A coalesced flow dependence in the polyhedral representation is satisfied by

a synthesized dataflow diagram if the array write node and read node associated with the

dependence lie on the same can-inplace path.

Proof. Each of the array write nodes u1, u2, . . . , um lies on the can-inplace path pu1→um
due

to Theorem 4. A coalesced flow dependence exists between the write access um and read

access r. Therefore, there must be a path pum→r , which means that all of these nodes must

lie on the same can-inplace path pu1→r . If a read access r is the only access to a variable

inside an inner loop l, the coalesced flow dependence between r and any ui scheduled

earlier is satisfied by a can-inplace path pu1→l . The incoming edge to l on this path need

only correspond to a loop-invariant input. It acts as a data source for r in the loop body.

Together, from Theorem 4 and Theorem 5, it can be seen that the path pu1→r diverges

from the path pu1→un
at um i.e., the last write scheduled ahead of r. This enables the

concurrent execution of the array write node um+1 and r, thereby exposing the inherent

parallelism in a dataflow diagram discussed earlier. There is no coalesced output or co-

alesced flow dependence between um+1 and r. Also, just as the output array of an array

write node can be inplace to the input array, loop-carried array outputs of a loop node can

be inplace to the corresponding input. Similarly, a loop-invariant array input corresponds

116 6. Polyhedral Compilation Of A Graphical Dataflow Language

to the array input of a read node, as they do not have a corresponding output that can

be inplace. Due to this symmetric relationship, based on coalesced dependences, we can

infer inherent parallelism in the following scenarios:

• Consider two compute-dags, T1 and T2, scheduled in the same time dimension, d,

such that θ d
T1
≺ θ d

T2
with no coalesced output or coalesced flow dependence between

them e.g. the two compute-dags have array accesses on disjoint sets of arrays. T1 and

T2 then constitute two tasks that can be executed in parallel in a dataflow program.

• Consider two loops, lx and ly , scheduled in the same time dimension such that there

is no coalesced output or coalesced flow dependence between compute-dags in one

loop and those of the other e.g. compute-dags in lx only read a particular array

variable, whereas those in ly only write to it. The two loops can be executed as

parallel tasks. This can be particularly crucial in obtaining good performance.

• Similarly, a loop and a compute-dag scheduled in the same time dimension with no

coalesced output or coalesced flow dependence between the compute-dag and those

in the loop.

Note that coalesced anti-dependences do not inhibit parallelism. The read and write

access on the same variable may share the same data source. The read access can be

performed on a copy of the data, while the write access is performed on the source data.

A dataflow diagram synthesized as described in the proofs for Theorem 4 and 5 is in-

deed a SCoD. The characteristics (1) and (2) are trivially satisfied. The dataflow diagram

also meets characteristic (3) as all the array write nodes are serialized in accordance with

Theorem 4. Furthermore, the construction described in the proof for Theorem 4 also en-

sures that whenever a loop-carried input-output pair is created, the corresponding source

and sink vertices have an associated can-inplace path, thereby ensuring characteristic (4).

Finally, the proof for Theorem 5 also implies a loop-carried input for a particular variable

access is created on a loop only when all the accesses to a variable inside the loop-nest are

read accesses. Therefore, a flow path from a loop-invariant source vertex to a loop-carried

input never exists, ensuring characteristic (6).

6.2. Code Synthesis 117

Algorithm 6 processes the read accesses of a statement analogue first and then the

write access. Algorithm 7, briefly explained below, describes the creation of the array

dataflow paths for the corresponding read and write nodes in the compute-dag.

Read accesses: Suppose the array read node is scheduled to execute in loop lm. The

closest enclosing loop lc that has an array write node (for a write access on the same

variable) in its body, and therefore, an associated loop-carried input sc is found (line 7.4).

A dataflow through loop-invariant inputs is then created to propagate the data flowing

into the loop-carried output s′c (line 7.12) to the inner loop lm (line 7.14). This is the data

produced by the write node associated with the last write access on the variable. However,

if part of such a flow through loop-invariant inputs already exists for an intervening loop,

it is extended to reach lm (line 7.13).

Write accesses: Suppose the array write node is scheduled in a loop lm. As in the case

of a read access, the loop lc is found (line 7.4). Any flow of data through loop-invariant

inputs of intervening loops, from the source v of the loop-carried output s′c is transformed

to a flow of data through loop-carried inputs to the inner loop lm. The newly created data

flow through loop-carried inputs and outputs replaces the existing flow path (v, w, s′c) (line

7.7-line 7.9).

Once the dataflow from the variable source vertex is created to the loop enclosing the

access node, it can read or write the data flowing in. The required access computation

trees are created using the access information (usually represented by a matrix). The data

outputs from these trees serve as the index inputs to access node.

Loop iterators and global parameters: Besides the variable accesses, considered so

far, there might still be other nodes whose input dataflow is yet to be created. The sources

of these node inputs are either the loop iterators or global parameters for the SCoD e.g.

consider the compute-dag that corresponds to (b[i] = a[i] + i), the i input to the add

node in the compute-dag still needs an input dataflow. Two mappings, paramSource and

iteratorSource, from the set of node inputs to the sets of global parameters and loop

iterators, can be used to create the input dataflow from the corresponding source vertices.

In an actual implementation, these mappings have to be derived from the earlier phases

118 6. Polyhedral Compilation Of A Graphical Dataflow Language

Figure 6.2: A high-level overview of PolyGLoT

of polyhedral extraction and optimization.

6.3 The PolyGLoT Auto-Transformation Framework

We employed the techniques described so far to build PolyGLoT, a polyhedral automatic

transformation framework for LabVIEW. The LabVIEW compiler translates the source dataflow

diagram into a hierarchical, graph-based dataflow intermediate representation (DFIR).

Several standard compiler optimizations are performed on this intermediate representa-

tion. We implemented a separate pass that uses PolyGLoT to perform polyhedral extrac-

tion, auto-transformation and dataflow diagram synthesis in that order. The optimized

DFIR graph is then translated to the LLVM IR, which is then further optimized by the LLVM

backend compiler that finally emits the machine code.

PolyGLoT consists of four stages. The first stage extracts the polyhedral representation

from a user-specified SCoD using the techniques described in Section 6.1. The translation

is performed on DFIR. Glan (named after its C counterpart), a G loop analysis tool, was

implemented to serve this purpose. The polyhedral representation extracted is used as an

input to Pluto, an automatic parallelizer and locality optimizer. Pluto then applies a se-

quence of program transformations that include loop interchange, skewing, tiling, fusion,

and distribution. Pluto internally calls into CLooG to output the transformed program as

C code. Glan was used to produce a representative text (encoding a compute-dag id and

also text describing the array accesses) for each compute-dag. Thus, we ensured that the

transformed C code produced by Pluto included statements that could be matched with

the computed-dags identified during extraction.

Clan was used to extract the polyhedral representation of the transformed C code,

6.4. Experimental Evaluation 119

which was finally used as the input for GLoS (G loop synthesis). GLoS is a tool that

synthesizes DFIR from the input polyhedral representation as per techniques developed

in Section 6.2. Pluto was also used to produce scheduling information of loops that it

would parallelize using OpenMP. This information was used by GLoS to parallelize the

corresponding loops in the synthesized DFIR using the LabVIEW parallel for loop feature.

6.4 Experimental Evaluation

For the purpose of experimental evaluation, we implemented many of the benchmarks in

the publicly available Polybench/C 3.2 [PBE] suite in LabVIEW. The matmul and ssymm

benchmarks from the example test suite in Pluto were also used. Each of these benchmarks

were then compiled using five different configurations.

• lv-noparallel is the configuration that simply uses the LabVIEW production compiler.

This is the baseline for configurations that do not parallelize loops.

• pg-loc uses the LabVIEW compiler but with our transformation pass enabled to per-

form locality optimizations.

• lv-parallel again uses the LabVIEW production compiler, but with loop paralleliza-

tion. The parallel for loop feature in LabVIEW [YFDB10, BDYF10] is used to paral-

lelize loops when possible in the G code.

• pg-par is with our transformation pass enabled to perform auto-parallelization but

without any locality optimizing transformations. In order to realize a parallel loop

identified as parallelizable, Bordelon et al. [BDYF10]’s solution is used. The parallel

loops in the transformed code are identified using Pluto [Plu].

• pg-loc-par is with our transformation pass enabled to perform both locality optimiza-

tions and auto-parallelization.

The comparisons of the runtime performance with various configurations can be found

in Table 6.1. The performance numbers were obtained on a dual-socket Intel Xeon CPU

120
6.PolyhedralC

om
pilation

O
f

A
G

raphicalD
ataflow

Language

Benchmark Problem size Execution time (seq) Speedup Execution time (8 cores) Speedup over lv-par

lv-nopar pg-loc (local) lv-par pg-par pg-loc-par pg-par pg-loc-par

atax NX=4096, NY=4096 0.456s 0.567s 0.80 0.707s 0.642s 0.167s 1.10 4.23

bicg NX=4096, NY=4096 0.409s 0.689s 0.59 0.409s 0.220s 0.093s 1.86 4.40

doitgen NQ=NR=NP=128 7.476s 7.344s 1.02 0.976s 0.999s 0.934s 0.98 1.04

floyd-warshall N=1024 86.06s 91.89s 0.94 82.76s 13.64s 4.909s 6.07 16.9

gemm NI=NJ=NK=1024 60.40s 24.20s 2.50 7.026s 5.473s 3.628s 1.28 1.94

gesummv N=4096 0.488s 0.536s 0.91 0.078s 0.069s 0.074s 1.13 1.05

matmul N=2048 688.5s 196.3s 3.51 89.49s 94.70s 27.44s 0.94 3.26

mvt N=4096 1.248s 0.828s 1.51 0.195s 0.334s 0.105s 0.58 1.86

seidel N=1024, T= 1024 44.82s 44.79s 1.00 45.03s 9.797s 8.364s 4.60 5.38

ssymm N=2048 122.8s 177.4s 0.69 15.03s 55.45s 23.85s 0.27 0.63

syr2k NI=1024, NJ=1024 34.03s 30.86s 1.10 4.190s 4.423s 4.223s 0.95 0.99

syrk NI=1024, NJ=1024 24.44s 22.01s 1.11 2.974s 3.118s 2.793s 0.95 1.06

trmm N=2048 231.7s 64.62s 3.59 41.29s 39.94s 11.42s 1.03 3.62

Table 6.1: Summary of performance (sequential and parallel execution on an 8-core machine)

6.5. Related Work 121

E5606 (2.13 GHz, 8 MB L3 cache) machine with 8 cores in all, and 24 GB of RAM.

LLVM 2.8 was the final backend compiler used by LabVIEW.

Table 6.1 shows that the benchmarks gemm, matmul, mvt, syr2k, syrk and trmm ben-

efit from locality-enhancing optimizations, in particular, loop tiling [Xue00], and in ad-

dition, loop fusion and other unimodular transformations [ASUL06, Wol95]. Table 6.1

also shows the effect of locality optimizations in conjunction with loop parallelization. It

can be seen that for floyd-warshall and seidel, loop skewing exposes loop parallelism that

could not have been exploited without it. The benchmarks, atax, bicg, floyd-warshall,

gemm, matmul, mvt, seidel, syrk, trmm benefit from more coarse-grained parallelism, i.e.,

a reduced frequency of shared-memory synchronization between cores as a result of loop

tiling. In some cases, we see a slow down with PolyGLoT, often by about 10%. We believe

that this is primarily due to transformed code generated by PolyGLoT not being optimized

by subsequent passes within LabVIEW and the backend compiler (LLVM) as well as the

baseline (lv-noparallel and lv-parallel). This is also partly supported by the fact that pg-loc

itself produces this slow down, for example, for ssymm. Better downstream optimization

within LabVIEW and in LLVM after PolyGLoT has been run can address this. In addition,

the loop fusion heuristic used by Pluto can be tailored for LabVIEW code to obtain better

performance. Overall, we see a mean speedup of 2.30× with PolyGLoT (pg-loc-par) over

the state-of-the-art (lv-parallel).

6.5 Related Work

A significant amount of work has been done on using polyhedral techniques in the com-

pilation of imperative languages [Fea92a, Fea92b, Gri04, BBK+08]. Clan is a widely used

research tool for extracting a polyhedral representation from C static control parts [Bas]. A

more recent work is pet that uses a full-fledged C frontend (Clang for LLVM) [VG12]. Pro-

duction compilers with polyhedral framework implementations include IBM XL [BGDR10],

RSTREAM [MVW+11], and LLVM [GZA+11].

Ellmenreich et al. [ELG99] have considered the problem of adapting the polyhedral

122 6. Polyhedral Compilation Of A Graphical Dataflow Language

model to parallelize a functional program in Haskell. The source program is analyzed to

obtain a set of parallelizable array definitions. Dependence analysis on each array set is

then performed to parallelize all the computations within the set.

Johnston et al. [JHM04] review the advances in dataflow programming over the decades.

Ample work has been done on parallelizing dataflow programs. It includes the work on

loop parallelization analysis by Yi et al. [YFDB10]. Dependences between array accesses

are analyzed using standard techniques to determine if a given user-specified loop in a

graphical dataflow program can be parallelized. In contrast to these works, the focus of

our work is not really on parallelization but on leveraging existing polyhedral compila-

tion techniques to perform dataflow program transformations. Parallelism detection is

but a small component of a loop-nest optimization framework. The complete polyhedral

representation that we extract from a given dataflow program part can be used to drive

automatic transformations, many of which can actually aid parallelization. Furthermore,

to the best of our knowledge, no prior art exists that tackles this problem and the prob-

lem of dataflow program part synthesis from an equivalent polyhedral representation by

exploiting the inplaceness opportunities that can be inferred from the dataflow program.

The work of Yi et al. [YFDB10] is commercially available as the parallel for loop feature in

LabVIEW, and we compared with it through experiments in Section 6.4. Given an iterative

construct in a dataflow program that is marked parallel, Bordelon et al. [BDYF10] stud-

ied the problem of parallelizing and scheduling it on multiple processing elements. Our

system uses it to eventually realize parallel code from the transformed DFIR.

The interplay between scheduling and maximizing the inplaceness of aggregate data

has been studied by Abu-Mahmeed et al. [AMMB+09]. Recently, Gerard et al. [GGPP12]

have built on this work to provide a solution for inter-procedural inplaceness using lan-

guage annotations that express inplace modifications. The soundness of such an annota-

tion scheme is guaranteed by a semi-linear type system, where a value of a semi-linear type

can be read multiple times and then updated once. For any array data source in any dia-

gram of the SCoD, there is at most one node that can overwrite it. During the polyhedral

extraction, by scheduling a write node after all the read nodes which share the same data

6.5. Related Work 123

source, we in effect choose semi-linear type semantics on the array data in the dataflow

diagram. It also allows us to infer an inplace path of array updates. The inplace path is

used for associating the accesses to an array definition in the polyhedral representation,

which can have multiple write accesses to the same definition.

CHAPTER 7

CONCLUSIONS

Automatic solutions to the storage optimization problem, be it intra-array or inter-array,

are crucial for high-level and domain-specific language compilers, where a code generation

scheme unaware of array reuse leads to excessive storage. For scaling to large data sets

and for performance, it is necessary to reduce the memory footprint. We cast the problem

as one of array space partitioning where each partition uses the same memory location.

This allowed us to develop algorithms to find the right orientations for the array parti-

tioning hyperplanes. The algorithms can handle non-convex conflict relations described

as union of polyhedra. The algorithm for intra-array reuse is driven by the two objectives

of maximizing conflict satisfaction and minimizing conflict distances. For numerous ex-

amples and real-world problems, we showed significant reductions in storage requirement

over previous techniques, ranging from a constant factor to asymptotic in loop blocking

factor or array extents — the latter being a dramatic improvement for practical purposes.

While the greedy nature of conflict satisfaction does not necessarily lead to optimal solu-

tions, experimental evaluation shows that it is capable of finding optimal affine mappings

in practice. Furthermore, a decoupled approach for intra and inter-array optimization, in

spite of being powerful in its own class, is only capable of local decisions on compressing

125

126 7. Conclusions

storage. We have addressed this problem by proposing a single unified solution to per-

form intra and inter-array memory optimization. Experimental results show significant

reductions in storage and improvement in performance. The framework and the objec-

tive functions are also highly flexible for customization and exploration of optimization

strategies.

Polyhedral optimizers can facilitate full-fledged automatic program transformations by

cobbling together machinery drawn from a wide range of polyhedral tools – loop ana-

lyzers such as Clan [Bas], Pet [VG12], loop optimizers such as Pluto [Plu], various poly-

hedral analysis and code generation tools such as ISL [Ver10], Piplib [PIP, Fea88] and

CLooG [Bas04]. However, no polyhedral storage optimizer is yet to feature in any stan-

dard polyhedral optimization framework. We believe that SMO [SMO16], which is open

source and publicly available for download, can serve as a good starting point towards ad-

dressing this missing link. Our experience in developing and evaluating SMO has shown

that there are also significant challenges in the auto-generation of the transformed array

accesses. It would be interesting to investigate the interplay between auto-vectorization

opportunities and modulo accesses. Furthermore, we need to explore ways for optimiz-

ing the numerous conditional expressions that result from total expansion as well as the

modulo operations.

We have tackled the problem of extracting polyhedral representations from graphical

dataflow programs that can be used to perform high-level program transformations au-

tomatically. Additionally, we also studied the problem of synthesizing dataflow diagrams

from their equivalent polyhedral representation. To the best of our knowledge, this is the

first work which deals with these problems, and does this while exploiting inplaceness op-

portunities inherent in a dataflow program. We also demonstrated that our techniques are

of practical relevance by building an automatic transformation framework for the LabVIEW

compiler that uses them. In several cases, programs compiled through our framework out-

performed those compiled otherwise by significant margins. In future, we would like to

expand the class of dataflow programs which can be compiled using our framework.

BIBLIOGRAPHY

[ABD07] Christophe Alias, Fabrice Baray, and Alain Darte. Bee+Cl@k: An implemen-

tation of lattice-based array contraction in the source-to-source translator

Rose. In Languages Compilers and Tools for Embedded Systems, pages 73–82,

2007.

[Ali07] Christophe Alias. Bee+Cl@k, 2007. Bee+Cl@k tool: http://compsys-

tools.ens-lyon.fr/bee/.

[AMMB+09] Samah Abu-Mahmeed, Cheryl McCosh, Zoran Budimli, Ken Kennedy,

Kaushik Ravindran, Kevin Hogan, Paul Austin, Steve Rogers, and Jacob Ko-

rnerup. Scheduling tasks to maximize usage of aggregate variables in place.

In Intl. Conference on Compiler Construction (CC), pages 204–219, 2009.

[ASUL06] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, and Monica S. Lam. Compilers:

Principles, Techniques, and Tools Second Edition. Prentice Hall, 2006.

[Bas] Cédric Bastoul. Clan: The Chunky Loop Analyzer. The Clan User guide.

[Bas04] Cédric Bastoul. Code generation in the polyhedral model is easier than you

think. In Proceedings of the 13th International Conference on Parallel Archi-

tectures and Compilation Techniques, pages 7–16, September 2004.

127

128 BIBLIOGRAPHY

[BB13] Somashekaracharya G. Bhaskaracharya and Uday Bondhugula. PolyGLoT: A

Polyhedral Loop Transformation Framework for a Graphical Dataflow Lan-

guage. In Intl. conference of Compiler Construction (CC, part of ETAPS), pages

138–146, Rome, Italy, March 2013.

[BBC16a] Somashekaracharya G Bhaskaracharya, Uday Bondhugula, and Albert Co-

hen. Automatic Storage Optimization for Arrays. ACM Transactions on Pro-

gramming Languages and Systems, 38(3):11:1–11:23, April 2016.

[BBC16b] Somashekaracharya G. Bhaskaracharya, Uday Bondhugula, and Albert Co-

hen. SMO: An Integrated Approach to Intra-array and Inter-array Storage

Optimization. Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, pages 526–538, 2016.

[BBK+08] Uday Bondhugula, M. Baskaran, Sriram Krishnamoorthy, J. Ramanu-

jam, A. Rountev, and P. Sadayappan. Automatic transformations for

communication-minimized parallelization and locality optimization in the

polyhedral model. In Compiler Construction, pages 132–146, Apr 2008.

[BDYF10] Adam Bordelon, Robert Dye, Haoran Yi, and Mary Fletcher.

Automatically creating parallel iterative program code in

a data flow program. (20100306733), December 2010.

http://www.freepatentsonline.com/y2010/0306733.html.

[BGDR10] Uday Bondhugula, Oktay Gunluk, Sanjeeb Dash, and Lakshminarayanan

Renganarayanan. A model for fusion and code motion in an automatic par-

allelizing compiler. In Proceedings of the 19th International Conference on

Parallel Architectures and Compilation Techniques, pages 343–352, 2010.

[BPB12] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. Tiling stencil

computations to maximize parallelism. In SC, pages 40:1–40:11, 2012.

BIBLIOGRAPHY 129

[CC04] Patrick Carribault and Albert Cohen. Application of storage mapping opti-

mization to register promotion. In ACM International Conference on Super-

computing (ICS’04), pages 247–256, St-Malo, France, June 2004.

[CDRV97] Pierre-Yves Calland, Alain Darte, Yves Robert, and Frédéric Vivien. Plugging

anti and output dependence removal techniques into loop parallelization

algorithm. Parallel Computing, 23(1-2):251–266, 1997.

[CFGV09] Philippe Clauss, Federico Javier Fernandez, Diego Garbervetsky, and Sven

Verdoolaege. Symbolic polynomial maximization over convex sets and its

application to memory requirement estimation. IEEE Trans. VLSI Syst.,

17(8):983–996, 2009.

[DIY16a] Alain Darte, Alexandre Isoard, and Tomofumi Yuki. Extended lattice-based

memory allocation. Proceedings of the 25th International Conference on Com-

piler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016, pages

218–228, 2016.

[DIY16b] Alain Darte, Alexandre Isoard, and Tomofumi Yuki. Liveness analysis in

explicitly-parallel programs. Proceedings of the 6th International Workshop

on Polyhedral Compilation Techniques, IMPACT, Jan 2016.

[DSV05] Alain Darte, Robert Schreiber, and Gilles Villard. Lattice-based memory al-

location. IEEE Transactions on Computers, 54(10):1242–1257, 2005.

[ELG99] Nils Ellmenreich, Christian Lengauer, and Martin Griebl. Application of the

polytope model to functional programs. In Proceedings of the 12th Interna-

tional Workshop on Languages and Compilers for Parallel Computing, pages

219–235, 1999.

[Fea88] P. Feautrier. Parametric integer programming. RAIRO Recherche Opéra-

tionnelle, 22(3):243–268, 1988.

130 BIBLIOGRAPHY

[Fea92a] P. Feautrier. Some efficient solutions to the affine scheduling problem: Part

I, one-dimensional time. International Journal of Parallel Programming,

21(5):313–348, 1992.

[Fea92b] P. Feautrier. Some efficient solutions to the affine scheduling problem: Part

II, multidimensional time. International Journal of Parallel Programming,

21(6):389–420, 1992.

[GCH+14] Tobias Grosser, Albert Cohen, Justin Holewinski, P Sadayappan, and Sven

Verdoolaege. Hybrid hexagonal/classical tiling for GPUs. In IEEE/ACM In-

ternational Symposium on Code Generation and Optimization, page 66. ACM,

2014.

[GCM97a] Eddy De Greef, Francky Catthoor, and Hugo De Man. Array placement for

storage size reduction in embedded multimedia systems. International Con-

ference on Application Specific Systems, Architectures, and Processors, pages

66–75, 1997.

[GCM97b] Eddy De Greef, Francky Catthoor, and Hugo De Man. Memory size reduc-

tion through storage order optimization for embedded parallel multimedia

applications. Parallel Computing, 23(12):1811–1837, 1997.

[GGPP12] Léonard Gérard, Adrien Guatto, Cédric Pasteur, and Marc Pouzet. A modular

memory optimization for synchronous data-flow languages: application to

arrays in a lustre compiler. In Proceedings of the 13th ACM SIGPLAN/SIGBED

International Conference on Languages, Compilers, Tools and Theory for Em-

bedded Systems, pages 51–60, 2012.

[GNU10] GNU. GNU Linear Programming Kit (GLPK), 2010.

https://www.gnu.org/software/glpk/.

[Gri04] Martin Griebl. Automatic Parallelization of Loop Programs for Distributed

Memory Architectures. University of Passau, 2004. Habilitation thesis.

BIBLIOGRAPHY 131

[GV15] Pieter Ghysels and Wim Vanroose. Modeling the performance of geometric

multigrid stencils on multicore computer architectures. SIAM J. Scientific

Computing, 37(2):C194–C216, 2015.

[GZA+11] Tobias Grosser, Hongbin Zheng, Ragesh Aloor, Andreas Simburger, Armin

Größlinger, and Louis-Noël Pouchet. Polly: Polyhedral optimization in LLVM.

In IMPACT, 2011.

[HS88] Chris Harris and Mike Stephens. A combined corner and edge detector. In

In Proceedings of Fourth Alvey Vision Conference, pages 147–151, 1988.

[Int13] Intel. Using Intel VTune Amplifier XE To Tune Software on the Intel Xeon

Processor E5 family, 2013. https://software.intel.com/en-us/articles/using-

intel-vtune-amplifier-xe-to-tune-software-on-the-intel-xeon-processor-e5-

family.

[Int15] Intel. Intel VTune Amplifier XE 2015 (build 367957), 2015.

https://software.intel.com/en-us/articles/intel-vtune-amplifier-xe-release-

notes.

[JHM04] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in

dataflow programming languages. ACM Computing Surveys, 36(1), March

2004.

[Lab10] NI LabVIEW Compiler: Under the Hood, 2010.

http://www.ni.com/white-paper/11472/en.

[LF98] Vincent Lefebvre and Paul Feautrier. Automatic storage management for

parallel programs. Parallel Computing, 24(3-4):649–671, 1998.

[LLL01] A. Lim, S. Liao, and M. Lam. Blocking and array contraction across arbi-

trarily nested loops using affine partitioning. In ACM SIGPLAN symposium

on Principles and Practice of Parallel Programming (PPoPP), pages 103–112,

2001.

132 BIBLIOGRAPHY

[MCT96] K. McKinley, S. Carr, and C. Tseng. Improving Data Locality with Loop Trans-

formations. ACM TOPLAS, 18(4):424–453, July 1996.

[MVB15] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. Polymage: Au-

tomatic optimization for image processing pipelines. In Intl. Conference on

Architectural Support for Programming Languages and Operating Systems, AS-

PLOS ’15, pages 429–443, 2015.

[MVW+11] Benoît Meister, Nicolas Vasilache, David Wohlford, Muthu Manikandan

Baskaran, Allen Leung, and Richard Lethin. R-stream compiler. In Ency-

clopedia of Parallel Computing, pages 1756–1765. Springer, 2011.

[PAVB15] Irshad Pananilath, Aravind Acharya, Vinay Vasista, and Uday Bondhugula.

An Optimizing Code Generator for a Class of Lattice-Boltzmann Computa-

tions. ACM Transactions on Architecture and Code Optimization (TACO), May

2015.

[PBE] Polybench. http://polybench.sourceforge.net.

[Pik02] G. Pike. Reordering and Storage Optimizations for Scientific Programs. PhD

thesis, University of California Berkeley, 2002.

[PIP] PIP: The Parametric Integer Programming Library. http://www.piplib.org.

[Plu] PLUTO: An automatic polyhedral parallelizer and locality optimizer for mul-

ticores. http://pluto-compiler.sourceforge.net.

[QR00] Fabien Quilleré and Sanjay Rajopadhye. Optimizing memory usage in the

polyhedral model. ACM Transactions on Programming Languages and Sys-

tems, 22(5):773–815, 2000.

[RKBA+13] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,

Frédo Durand, and Saman P. Amarasinghe. Halide: a language and compiler

for optimizing parallelism, locality, and recomputation in image processing

BIBLIOGRAPHY 133

pipelines. In ACM SIGPLAN symposium on Programming Languages Design

and Implementation, pages 519–530, 2013.

[SCFS98] M. Strout, Larry Carter, Jeanne Ferrante, and Beth Simon. Schedule-

independent storage mapping for loops. In Intl. conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), pages

24–33, 1998.

[Sch86] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley

& Sons, 1986.

[SMO16] A Storage Optimization Tool For Regular Loop Nests, 2016.

https://github.com/bondhugula/smo.

[Suc01] S. Succi. The Lattice Boltzmann equation: for fluid dynamics and beyond.

Oxford university press, 2001.

[TVA07] William Thies, Frédéric Vivien, and Saman Amarasinghe. A step towards uni-

fying schedule and storage optimization. ACM Trans. Program. Lang. Syst.,

29(6), October 2007.

[TVSA01] William Thies, Frédéric Vivien, Jeffrey Sheldon, and Saman P. Amarasinghe.

A unified framework for schedule and storage optimization. In ACM SIG-

PLAN symposium on Programming Languages Design and Implementation,

pages 232–242, 2001.

[Ver10] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In

Komei Fukuda, Joris Hoeven, Michael Joswig, and Nobuki Takayama, ed-

itors, Mathematical Software - ICMS 2010, volume 6327, pages 299–302.

Springer, 2010.

[VG12] Sven Verdoolaege and Tobias Grosser. Polyhedral extraction tool. In Impact

2012, 2nd International Workshop on Polyhedral Compilation Techniques, Jan-

uary 2012.

134 BIBLIOGRAPHY

[Wol95] Michael Wolfe. High Performance Compilers for Parallel Computing. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[WR96] Doran Wilde and Sanjay V. Rajopadhye. Memory reuse analysis in the poly-

hedral model. In International Euro-Par Conference on Parallel Processing,

pages 389–397, 1996.

[Xue00] Jingling Xue. Loop tiling for parallelism. Kluwer Academic Publishers, Nor-

well, MA, USA, 2000.

[YFDB10] Haoran Yi, Mary Fletcher, Robert Dye, and Adam Bordelon. Loop paralleliza-

tion analyzer for data flow programs. (20100306753), December 2010.

http://www.freepatentsonline.com/y2010/0306753.html.

