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Abstract

Linear algebra computations and other arbitrary affine accesses are ubiquitous in appli-

cations from domains like scientific computing, digital signal processing (DSP), and deep

neural networks. Libraries such as OpenBLAS, MKL, and FFTW provide efficient hand-

optimized implementations for matrix and vector primitives used in these domains for

various architectures. Applications are then built upon these standard library routines

to obtain high performance. These libraries do not perform well for all matrix sizes and

obtain sub-optimal performance for small matrices. The interface of these libraries can

also be fairly complex requiring several input parameters. Thus, an even higher level of

abstraction is often desired to improve productivity. Further, by using these libraries the

opportunity to optimize across different library calls is lost. Traditional programming to

exploit this locality using library functions becomes complex.

The work in this thesis proposes (i) a tile size selection model which works for any

arbitrary affine access and eschews auto-tuning, (ii) a simple heuristic to determine the

profitability of library call mapping and falling back to generated code otherwise, (iii) an

intra-tile optimization technique to expose inner-loop parallelism thus enabling general

purpose compiler’s vectorizer to generate vector instructions, (iv) a DSL approach with

high level primitives and functions to allow expressing computations efficiently.

The optimizations proposed are implemented in the PolyMage DSL. PolyMage is a do-

main specific language (DSL) originally designed for image processing pipelines. Its opti-

mizer is able to perform optimizations like fusion, tiling, and loop optimizations for image

processing pipelines. Firstly, PolyMage’s language specification is extended to support ad-

ditional functions and primitives for matrix computations and perform domain inference
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automatically. Secondly, PolyMage compiler’s fusion and tile size selection heuristics are

extended to work with arbitrary affine accesses. It is thus able to optimize computations

from additional domains including dense linear algebra and certain DSP computations.

The heuristic to map matrix operations to corresponding optimized library implementa-

tions are incorporated with the help of an idiom recognition algorithm.

The thesis finally experimentally evaluates these optimizations on modern multicore

systems using representative benchmarks from PolyBench, digital signal processing, and

image processing. The results are compared to state-of-the-art optimization approaches

and frameworks in each domain. Experiments on DSP benchmarks show that our opti-

mizations give a mean speed up of 7.7× over the existing PolyMage optimizer, 5.1× over

the Python numpy package and 1.9× over MATLAB toolboxes with parallel computing sup-

port. Linear algebra computations from the PolyBench benchmark suite obtain an average

a speedup of 21.7× over the existing PolyMage optimizer, 3.6× over Pluto and 4.1× over

PPCG.
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Chapter 1

Introduction

Several domains such as computer vision, image processing, machine learning, computa-

tional fluid dynamics, and digital signal processing are using computational capability to

solve real-world problems. These domains are fast evolving and solve complex problems

with increasingly large datasets, complex simulations, and tools for deeper analysis. A

significant portion of the execution time of these modern applications is comprised of ma-

trix computations and other arbitrary affine accesses. These computations often form the

building blocks in these applications. Thus, providing high performant implementations

of these computations allows us to accelerate and improve the performance of the ap-

plications. Further, with the introduction of increasingly complex hardware architectural

features such as parallel processors, vector processors, hierarchical memory and systolic

arrays, taking advantage of these modern systems is non-trivial.

Hence, optimization of applications is now a challenge for compiler and algorithm ex-

perts. These rapid technology evolution burdens the domain scientists to extract best per-

formance for their applications. Providing an abstraction to domain scientists to express

these intricate computations while hiding the complexity of extracting the best perfor-

mance from the hardware is valuable. The backend of this compiler must provide perfor-

mant code irrespective of the problem sizes, characteristics, and architectural features.

Section 1.1 introduces the computations that are considered for optimization in this

work. Section 1.2 provides a primer of the optimizations proposed in this thesis to improve

1



2 1. Introduction

the performance of these computations and Section 1.3 summarizes the contributions of

this work.

1.1 Computation Primitives

This section introduces and describes the set of computation primitives and their applica-

bility that are targeted to be optimized in this thesis.

1.1.1 Matrix Computations

Common matrix computations are synonymous with basic linear algebra computations.

They include matrix-matrix multiplications/additions/subtractions, matrix-vector multi-

plications, matrix transpose and point-wise matrix multiplications where each index of the

array in a loop nest is a function of only one dimension (or loop iterator). For example,

array access of the form mem[i], mem[i][ j], mem[i + 1][ j + 1]. The computational com-

plexity and architectural efficiency of these operations depends on matrix sizes, type of

the operation and also the sequence in which these computations are performed. Optimiz-

ing the performance of these matrix computations remains an important problem. Matrix

computations are already part of several computational science and engineering workloads

such as computational biology and computational fluid dynamics. Another major exam-

ple of these matrix operations can be seen in neural network computations. For example,

a convolution neural network (CNN) can be reduced to perform simple 2D matrix-matrix

multiplications, followed by addition of bias and then a normalization operation. Similarly,

recurrent neural networks(RNN) perform many matrix vector multiplications.

1.1.2 Arbitrary Affine Accesses

Another kind of computation on two dimensional matrices which is very prevalent in digital

signal processing is an operation where the array index in a loop nest is an affine function

of two or more dimensions (or loop iterators). Some example of these memory access are
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mem[i+ j+1], mem[i+ j][ j]. These computations can be seen in low pass filters in digital

signal processing. Exploiting locality in these kinds of computation is critical for better

performance.

1.2 The PolyMage DSL Solution for High Performance and

Productivity

The work in this thesis enhances PolyMage DSL to be able to support efficient authoring

of the computational primitives and generate high-performance code for them. All the

optimizations proposed are implemented as a part of the compiler of the PolyMage DSL.

PolyMage [24] is a domain-specific language (DSL) that was originally designed for image

processing pipelines. Its optimizer is able to perform optimizations such as fusion, tiling,

and other loop optimizations for such computations.

PolyMage is enhanced to generate high-performance code for computations involving

matrix computations and arbitrary affine accesses. Specifically, new constructs are added

to support linear algebra operations thus allowing applications that leverage such compu-

tations to be expressed in our DSL. Further, to deliver high performance with this newly

added support, a generic fusion and tile size selection heuristic is proposed for PolyMage to

work for matrix computations. Its compiler is thus able to robustly optimize computations

from additional domains including dense linear algebra and certain DSP computations over

and above Image Processing Pipelines.

Simple heuristics are used to support mapping of matrix operations to corresponding

BLAS library implementations when such a mapping is determined to be profitable. Thus,

PolyMage is now able to recognize and substitute appropriate code fragments with calls to

tuned libraries. If the mapping is deemed not profitable compared to the optimized code

generated by PolyMage, the library mapping is eschewed. This allows getting the best of

both worlds. Finally, an optimization to perform loop transformations at the outer level to

work in conjunction with library calls to obtain complementary benefits from libraries. In

effect, this allows to tile for locality at the outer loop level and exploit data reuse across



4 1. Introduction

library calls.

1.3 Summary of the Contribution

To summarize, the contributions of this thesis include:

• Support for high-performance code generation for matrix computations and arbitrary

affine accesses in PolyMage for improved programmability and productivity.

• A generic and robust model for tile size determination for PolyMage which eschews

auto-tuning for best-performing tile size.

• An amiable heuristic for performance inflection point based on profiling BLAS func-

tions i.e., the point after which BLAS call becomes profitable over PolyMage gener-

ated code. Using this heuristic in PolyMage along with idiom recognition allows to

map linear algebra functions to pre-optimized BLAS library calls when the perfor-

mance of such BLAS calls is determined to be superior.

• An intra-tile optimization algorithm to determine dimensions that allow for vector-

ization friendly loops to be selected as innermost dimensions.

• Extension of PolyMage to support optimizations like fusion and tiling for reduction

operations which further enable high-performance code generation by improving

data reuse in caches.

• Experimental evaluation of this approach and comparison with the state-of-the-art

frameworks. The optimized PolyMage shows a mean speedup of 7.7× over the base-

line naive PolyMage, 5.1× over numpy and 1.9× over MATLAB toolboxes with paral-

lel computing support for DSP benchmarks. The optimized PolyMage also obtains a

speedup of 3.6× over Pluto and 4.1× over PPCG on relevant PolyBench benchmarks.
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1.4 Thesis Organization

The rest of the thesis is organized as follows: Section 2 motivates the work of this the-

sis and discusses limitations in state-of-the-art works. Section 3 provides the necessary

background of PolyMage and its fusion and tile size selection model. The details of the op-

timizations proposed and the new compiler flow comprising of the proposed optimizations

is described in Section 4. Section 5 presents the experimental setup, methodology, and

benchmarks used for empirically evaluating the optimizations discussed. This is followed

by the experimental results and quantitative comparison with the state-of-the-art works in

the domain. Section 6 discusses the related work in this area and Section 7 concludes the

thesis and notes a few potential future directions.
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Chapter 2

Motivation

This chapter discusses the motivation for new techniques to optimize basic linear algebra

computations and other arbitrary affine access and the need for a new DSL. The chapter

describes the various techniques currently employed to obtain high-performance code for

the computation primitives and the limitations of each method.

2.1 Library Implementation

Basic linear algebra computations are commonly specified using a fixed Basic Linear Alge-

bra Subprograms (BLAS) interface. The BLAS abstraction allows code to be customized

for high performance on various architectures. Several computer vendors such as In-

tel (MKL [23]), NVIDIA (CuBLAS [7]) and other open source community driven projects

(OpenBLAS [25]) provide high-performant, machine-specific optimized implementations

for linear algebra kernels. These libraries are optimized for architectural advancements

such as vector processors, hierarchical memory with several levels of caches, hardware

prefetching and shared-memory parallel processors.

There are several limitations in naively mapping linear algebra computations to use

BLAS libraries. First, as observed by prior works, these libraries are well-optimized for large

matrices that fit in memory and beyond by leveraging tiling and several other architecture-

specific optimizations. However, for smaller matrices, these libraries do not provide the

7



8 2. Motivation

best possible performance as observed in several prior works [35, 13]. Second, the general

agreement on standard names and parameter lists for these BLAS operations allows for

better portability and efficiency of these libraries at the expense of productivity. The gen-

erality of these libraries makes the interface complex comprising several tens of parameters

to be specified by a programmer. This requires programmers to have some knowledge on

using these BLAS libraries. We also observe that optimizations which exploit reuse across

library calls cannot be expressed with the library interface itself. Furthermore, access to

the library sources does not help solve the problem as the ability to extract performance

with such a scheme still requires expertise and skillful programming.

2.2 Polyhedral Source-to-source tools

The other common approach to generate high-performance code from a sequential imple-

mentation of a program is by using an polyhedral source-to-source tools like Pluto [26].

Pluto accepts a sequential code and performs optimizations like loop permutation, scal-

ing, skewing and tiling on imperfectly nested loops. The major advantage of using this

approach is in the fact that the domain expert need not learn and understand any library

specification. However, there are two primary disadvantages of using this approach - (i)

the domain experts need to tune over a set of tile sizes to determine the optimal tile size

for a given architecture. The tuning time is proportional to the application execution time

and can be quite high for DSL applications with big datasets. Also, the tile size for a given

loop nest depends on the number of memory accesses in it. In case there are multiple

loop nests, a user cannot specify multiple tile sizes and can miss out on the performance of

training the loop nests separately. (ii) BLAS libraries still perform better for large matrix

sizes as compared to the code generated by Pluto.
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2.3 Domain-Specific Languages

Domain-specific languages are languages designed for specific domains. They provide do-

main experts with the ability to express high level algorithms and computations in an intel-

ligible manner, freeing them from low level implementation details. They also frequently

provide several high level constructs like Matrix and Image as primitives. Thus, DSLs can

make use of domain information to (i) abstract out tedious implementation details from

the programmer hence improving productivity, (ii) extract domain information to apply

optimizations which can improve the performance of the code. The optimizations applied

by the DSLs are applicable to different computer architectures. FLAME [12] is an example

of a DSL which internally maps the computations to BLAS calls. This approach overcomes

the need for the domain expert to understand the specifics of interfacing with a library

but still suffers the limitation of using a library implementation (discussed in Section 2.1).

LGen [21], BTO [34], Tensor comprehension [36] are some of the other DSLs that can

be used for matrix computations. These DSLs perform fusion and tiling optimizations on

the specified code, hence improving its performance. However, for large matrix sizes, they

still do not perform as well as the architecture specific library implementations (for e.g.

Intel MKL). Currently, these DSLs use tuning of the tile sizes over a range of parameters to

determine the best tile size for a given architecture.

2.4 DSL Approach

Each of the above implementations has its own advantages and disadvantages. This work

proposes an approach which tries to overcome all the above limitations while still making

sure to improve domain expert’s productivity. This is achieved by using a DSL approach

to hide the complexity of the optimizations from the domain expert. Note that one major

disadvantage of all the approaches discussed above is their lack of a good tile size selection

model. They either use default tile sizes or need tuning to decide on the best performing

tile sizes. Thus, a model which analytically determines the tile sizes for a given loop nest

with array computations having arbitrary affine access is required. Another important
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optimization is to be able to determine when to replace a loop nest with an optimized

library implementation, thereby not missing out on the performance benefits of the highly

optimized routines. The compiler should also enable better auto-vectorization and fusion

where possible for improved performance. Thus, a new DSL which automatically provides

the above optimizations for domain experts is essential.

PolyMage as a DSL for Matrix Computations

Polyhedral model is a mathematical framework which provides an abstraction for repre-

senting loop information and dependencies between statements as sets and maps. Sets are

used to represent the domain of the computation and maps are used to capture the depen-

dencies and the execution order of the statements (schedule) in the program. Polyhedral

model is applicable only when the array access is an affine function of the program param-

eters and the loop indices. The framework helps in performing loop optimizations as affine

transformations on these maps. Tiling, fusion and the other optimizations are performed

as a transformation on the program’s schedule using the polyhedral representation of the

input program. This fits perfectly for optimizing the computation primitives discussed in

Section 1.1.

PolyMage [24] is a domain-specific language which was proposed for image processing

applications. PolyMage implements an optimizing compiler, using the polyhedral model

theory, which provides support for extracting the polyhedral representation of the input

program using ISL [38] and hence generating the polyhedral schedules. Affine transforma-

tions for fusion and tiling can be applied on these schedules to obtain the desired optimiza-

tions. PolyMage also has support for polyhedral code generation and storage optimizations

for the tiled computation which is an additional advantage of using this framework. Hence,

PolyMage is a good candidate framework for implementing the proposed optimizations for

computational primitives discussed in Section 1.1.
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2.5 Summary

To summarize, this chapter described the motivation for the work in this thesis. The chap-

ter shows how the current approaches for optimizing computational primitives using li-

braries, optimizing compilers and domain-specific languages suffer from various shortcom-

ings. Thus, a comprehensive and wholistic approach to optimize the computational primi-

tives for high-performance and productivity is thus invaluable. This chapter also discusses

the advantages of using and extending PolyMage as the DSL for matrix Computations.
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Chapter 3

Background

This chapter provides the necessary background on the current PolyMage DSL. The details

of the existing optimizations performed by the backend compiler in PolyMage - its current

fusion and tile size selection model is explained in Section 3.1. Section 3.2, highlights

certain assumptions made in these models, which are ineffective when directly applied to

basic matrix operations.

3.1 PolyMage

PolyMage [24] is a high-performance domain-specific language designed for image pro-

cessing benchmarks and later extended for Multigrid methods [37]. It is embedded in

python and has language constructs that allow domain experts to express common op-

erations like stencils, point-wise, upsampling, downsampling, interpolate and restrict as

function calls. Basic matrix-matrix or matrix-vector operations like multiplications, addi-

tions, and transpose can already be implemented using these constructs. The example in

Figure 3.1 illustrates the PolyMage specification to compute the product of two matrices in

a single pipeline stage. The input to the DSL is specified with the keyword Image (lines 10

and 11) – here the two matrices to be multiplied. A matrix can be interpreted as a function

that maps a two dimensional integer domain (representing the row and column number)

to a value representing the corresponding element of the matrix. Program parameters such

13
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1 # Parameters
2 N = Parameter ( Int , "N" )
3
4 # v a r i a b l e s
5 i = Variable ( Int , " i " )
6 j = Variable ( Int , " j " )
7 k = Variable ( Int , " k " )
8
9 # Input

10 A = Image(Double , "A" , [N, N] )
11 B = Image(Double , "B " , [N, N] )
12
13 # Domain/ I n t e r v a l s
14 n_dom = In terva l ( Int , 0 , N−1)
15
16 # Matrix m u l t i p l i c a t i o n ope ra t i on
17 C = Reduction ( ( [ i , j ] , [n_dom , n_dom ] ) ,
18 ( [ i , j , k ] , [n_dom , n_dom , n_dom ] ) ,
19 Double , "C" )
20 C . defn = [Reduce(C( i , j ) , A( i , k ) B(k , j ) , Op .Sum) ]

Figure 3.1: Matrix multiplication in PolyMage

as the number of rows and columns of matrices are specified using the keyword Parameter.

A Function declares each stage (or an operation) in the pipeline. The domain of the func-

tion is specified using an Interval. Note that the domain of the function represents the

domain of its output. Reduction is a special type of function which takes two types of

domains: (1) the domain of the output given as the first argument and (2) the domain of

the computation (reduction domain) given as the second argument. In Figure 3.1, Lines

17-19 define the output matrix C as a two dimensional function that results from a three

dimensional computation. The definition of the computation (function) is given in lines

20-22. The definition indicates that the reduction operator is a summation, and the values

that are being reduced correspond to the pointwise multiplication of elements from i th row

of A and j th column of B.

From a specification, PolyMage compiler constructs a DAG whose nodes correspond

to functions (stages) and edges represent the dependences between these functions. As-

suming each function as a statement, it constructs a polyhedral representation for each
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function. Polyhedral schedules are computed to fuse and tile these functions. PolyMage

performs overlapped tiling; a strategy that satisfies dependences between tiles by perform-

ing redundant computation. These tiles are executed in parallel. The set of functions

within a tile form a group. The input to a group is called a live-in and output of a group

is called a live-out. Functions within a group, excluding live-in and live-out, are allocated

thread-local scratchpads – small buffers whose sizes are of the order of tile sizes. PolyMage

performs storage optimizations [37] that reuse scratchpads and the memory allocated for

live-in and live-out across groups, resulting in significant performance gains due to reduced

memory footprint.

Grouping (fusion) and tile sizes determine the amount of overlap and hence the amount

of redundant computation. The rest of this section discusses the current fusion and tile size

selection model in PolyMage.

3.1.1 Dynamic Programming based Fusion Model

Fusion or grouping or merging of the various functions is an important class of optimiza-

tions as it enables reuse of the data brought from memory. PolyMage originally proposed a

greedy fusion heuristic. A group is merged with its child if the following two conditions are

satisfied (i) the dependence distance between the group and its child is a constant and (ii)

the size of the overlapping region does not exceed the overlap threshold. This algorithm

however, had many limitations as explained in Jangda and Bondhugula [19] and the fusion

model was revised to use a Dynamic programming (DP) based heuristic which evaluates

all possible fusion strategies to pick the best one using a cost function.

The DP recurrence is shown in Figure 3.2. Where G is the grouping for a portion of the

DAG. G can be written as:

G = {H1, H2, . . . , Hn},

Hi is a connected sub-graph of S,

for any Hi, H j ∈ G, Hi ∩H j = ;. (3.1)
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Figure 3.2: Dynamic programming formulation of fusion
Courtesy: Jangda and Bondhugula [19]
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Figure 3.3: DP optimal sub-structure
Courtesy: Jangda and Bondhugula [19]

The function F(G) represents the optimal grouping with minimum cost. PART I T IONS

returns all possible partitioning, and SUCC returns all successor nodes in the DAG.

If all groups Hi in G do not have successors, then F(G) is the cost of G; otherwise,

it is the minimum between grouping Hi ∈ G with any of Hi ’s successors, and that of not

grouping with any of Hi ’s successors. The algorithm starts with the source vertex of the

pipeline graph. This recurrence uses memoization to store the grouping and cost of F(G).

The cost function F(G) is shown in Algorithm 1. The cost function takes in four criteria:

• amount of locality

• number of cores available to run in parallel

• amount of redundant computation
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Algorithm 1: Existing cost function for DP based fusion
Courtesy: Jangda and Bondhugula [19]

Input: H, L1CacheSize, L2CacheSize, InnerMostTileSize, NCores
Output: Cost of the Grouping

1 Function Cost(H, L1CacheSize, L2CacheSize, InnerMostTileSize, NCores):
2 if not constantDependenceVectors(H) then
3 return∞
4 end
5 〈cost, tileSizes, overlapSize〉 ← CostForCacheSize(H, L1CacheSize, NCores,

InnerMostTileSize)
6 if overlapSize > TileVolume(H, tileSizes) then
7 〈cost, tileSizes, overlapSize〉 ← CostForCacheSize(H, L2CacheSize, NCores,

InnerMostTileSize)
8 end
9 return 〈cost, tileSizes〉

10 Function CostForCacheSizeReduction(H, cacheSize, NCores, innerMostTileSize):
11 liveout_size← liveOutsSize(H)
12 totalFootprint← intermediateBuffersSize(H) + liveout_size
13 tileFootprint← min(totalFootprint÷NCores, cacheSize)
14 tileSizes← ComputeTileSizes (H, tileFootprint,innerMostTileSize)
15 livein_tile_size← liveInTileSize(H, tileSizes)
16 liveout_tile_size← liveOutTileSize(H, tileSizes)
17 comp_vol← ComputeTileVolume(H, tileSizes)
18 n_tiles← totalFootprint ÷ tileFootprint
19 overlapSize← OverlapSize(H, tileSizes)
20 relative_overlap← overlapSize ÷ tileFootprint
21 dim_diff← dimSizeStandardDeviation(H)
22 cost← w1×(livein_tile_size + liveout_tile_size)÷comp_vol −w2 ×

((n_tiles + NCores−1) % NCores) + w3 × relative_overlap +
w4 × dim_diff

23 return 〈cost, tileSizes, overlapSize〉
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• difference between the extent of the dimensions

Algorithm 2: Existing tile size computation
Courtesy: Jangda and Bondhugula [19]

Input: H, L1CacheSize, L2CacheSize, InnerMostTileSize, NCores
Output: Tile sizes of each dimension of G

1 Function ComputeTileSizes(H, tileFootprint, innerMostTileSize):
2 tileVol← tileFootprint ÷ numBuffers(H)
3 nDims← numDims(H)
4 dimReuse[1 . . . nDims]← getDimensionalReuse(H)
5 dimSizes[1 . . . nDims]← getDimensionalSizes(H)
6 tileSizes[nDims]← min(dimSizes[nDims], innerMostTileSize)
7 τ← tileVol ÷ tileSizes[nDims]
8 maxDimReuse← max(dimReuse[1:nDims − 1])
9 for i ∈ 1→ nDims− 1 do

10 τ← τ ÷ (dimReuse[i] ÷ maxDimReuse)
11 end
12 τ← τ1/(nDims− 1)

13 for i ∈ 1→ nDims− 1 do
14 tileSizes[i]← min(dimSizes[i],
15 τ× dimReuse[i] ÷ maxDimReuse)
16 end
17 return tileSizes

Each parameter is multiplied by an experimentally determined weight. The cost of a

group is calculated as follows:

cost = w1 × ratio of data to computation

−w2 × ((num_tiles + num_cores - 1)% num_cores)

+w3 × fraction of overlap

+w4 × relative difference between sizes of dimensions,

where w1, w2, w3, and w4 were calculated experimentally. The DP recursion terminates

when a group has no successors to fuse. An exhaustive search for all possible groupings

is made and the one with the minimal cost is chosen. The cost function also returns the
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tile size for the given partitioning. The details on tile size calculations are explained sub-

sequently in Section 3.1.2.

3.1.2 Tile Size Selection Model

Jangda and Bondhugula [19] proposed a model-driven approach to find tile sizes for each

group as shown in Algorithm 2. Tile size is obtained as a byproduct of the grouping algo-

rithm’s cost calculation. The inputs to the model are (i) L1 cache size, (ii) L2 cache size and

(iii) dimensional reuse along a dimension. A reuse score for each dimension is calculated

using the well-known technique described in [42]. The model proceeds to fit the data for

L1 cache size, by computing a tile size proportional to the dimensional reuse. If the amount

of overlap is greater than the overlap threshold, the model runs the same algorithm for L2

cache size. The model assumes that there exists a one-to-one correspondence between the

iterations and the data accessed within a group. Thus, the product of the tile sizes along

each dimension is equal to the number of distinct memory accesses within a tile (tile vol-

ume). If the innermost loops are parallel, they allocate a fixed tile size of (128 or 256) for

the innermost dimension to enable profitable prefetching and auto-vectorization.

For image processing pipelines, there is a one-to-one mapping between the iteration

space and the data accessed. Hence, τ1τ2...τm = T where T represents the total allowable

tile footprint.

Let γi be the ratio of the reuse score of the i th dimension with the maximum reuse. γi

is represented as the dimReuse[i] in Algorithm 2. Let τ be the tile size for the dimension

with maximum reuse. Set τi = γiτ. Hence: τmγ1γ2...γm = T , and τ can be determined

and hence the tile size for each dimension.

3.2 Limitations of PolyMage Compiler

There are some limitations to using PolyMage for matrix computations. The downsides

are:
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• Representation of linear algebra computations in PolyMage using reduction opera-

tions (shown in Figure 3.1) is complex and unintuitive.

• Tile size selection model in PolyMage assumes that there exists a one-to-one corre-

spondence between the iterations and the data accessed. However, this does not hold

for matrix computations. For example, a naive matrix-matrix multiplication with the

standard three dimensional loop nest accesses O (N 2) data in O (N 3) iterations.

• PolyMage’s ability to enable auto-vectorization is limited in cases where the inner-

most loop carries a dependence, as in the case of matrix multiplication.

• Reduction functions in PolyMage are treated as separate groups. These are neither

tiled nor parallelized, thereby significantly degrading performance.

• PolyMage lacks the ability to invoke routines provided by highly tuned libraries, like

OpenBLAS or Intel MKL, for basic linear algebra computations.

3.3 Summary

To summarize, the chapter provided the background on PolyMage, its existing fusion and

tile size selection model and also discussed the limitations for using it to optimize matrix

computations and arbitrary affine accesses. In the subsequent chapters enhancements to

the PolyMage compiler to provide support and generate optimized code for the computa-

tional primitives are discussed.



Chapter 4

Optimizing Matrix and Arbitrary Affine

Computations in PolyMage

This section describes the optimizations that are performed to improve the performance of

the computation primitives discussed in Section 1.1. The additional stages added to Poly-

Mage compiler flow is explained in Section 4.1. Section 4.2 describes the extensions in

PolyMage’s language specification to allow expressing computational primitives efficiently.

Following that, Section 4.3 describes the tile size selection model that works for any ar-

bitrary affine access. The heuristic for mapping computations to a suitable library call is

described in Section 4.4. Section 4.5 describes the algorithm used to permute parallel

loops to inner-most level in multi-level loop nests to exploit vectorization. Finally, Sec-

tion 4.6 describes the enhancements made in PolyMage to facilitate grouping of reduction

operations (introduced in Chapter 3)

4.1 Compiler Stages

This section describes the enhancements that were made to the PolyMage compiler to sup-

port optimizations for matrix computations. It describes the newly added stages as well as

enhancements done to certain other phases and their contribution to the optimization of

the benchmarks.

21
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Fusion +
Tiling

Intra-tile
optimization

Tile size and
Cost deter-
mination

Initial schedule

Function graph
Static bounds

check

DSL Spec-
ification

Idiom
recognition
& Library
mapping

Storage
Optimization

Code Gen-
eration

Opt C++ code

Figure 4.1: Enhanced compiler flow in PolyMage

Figure 4.1 shows the stages in the enhanced PolyMage compiler. The blocks in red indi-

cate phases that have either been newly added or have been extended to include additional

optimizations while the blue blocks indicate existing compiler flow. PolyMage accepts the

specification from the programmer. For ease of use and to improve programmers productiv-

ity, PolyMage’s specification has been extended to include language constructs that declare

matrices and overload operators for basic matrix operations. The list of functions and op-

erators introduced is described in Section 4.2. This is followed by the construction of the

function graph. All computations in PolyMage are represented as functions (Figure 4.2). A

function graph, represents these functions as nodes and the dependencies between them

as edges. Thus, it captures the producer-consumer relationship between the operations.

The bound checks for each of the functions defined is also performed at this stage. An

out of bound error is thrown in case the computation exceeds the bounds specified in its

domain. This is followed by extracting the polyhedral representation of the program and

generating the initial schedule based on the order function graph.

The next stage tries to perform fusion and tiling optimizations on the initial sched-

ule. Support to handle reduction operations in the fusion and tiling stage in the PolyMage

compiler has been newly introduced. Details of these stages are presented in Section 4.6.

After fusion and tiling, a new intra-tile optimization pass is introduced to bring parallel

loops to the innermost level in order to enable auto-vectorization by a native compiler.
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The algorithm used for finding an effective innermost loop is described in Section 4.5.

Following this, the tile sizes for the new schedule is calculated using the approach pre-

sented in Section 4.3. This approach supports arbitrary affine accesses and hence can be

effectively incorporated for basic matrix operations. The model proposed in Jangda and

Bondhugula [19] is used, to determine the cost of the current grouping. The fusion and

tiling + intra-tile optimization + tile selection phases are iterated for all possible groupings

and the one with the lowest cost is selected as the final schedule as explained in Chapter 3.

Once the final schedule has been selected, a new idiom recognition stage is introduced.

This stage maps basic matrix operations to optimized library calls when it is cost-effective.

After this step, the storage optimizations of PolyMage described in Section 3 are performed

and optimized C++ code is generated. This C++ code is then compiled with a native com-

piler like gcc. The rest of this chapter presents the details of each stage that performs fusion

and tiling, tile size selection, intra-tile optimizations, idiom recognition, and language ex-

tensions to support new primitives.

4.2 Language Specification

This section describes the new language constructs and operations that were introduced

in PolyMage. The introduction of matrix-specific constructs improves the readability and

tractability of the code. Two new constructs Matrix and Vector for improved productivity

have been introduced. PolyMage’s specification is extended to include overloading of the

basic operators for matrix/vector operations. Other commonly used operations are also

supported as primitive functions. These overloaded operators along with their details are

described in Table 4.1.

Table 4.1: Operators supported by PolyMage; where A and B are either matrix or vector

Operator Usage Description

+ A+B Point-wise addition
− A−B Point-wise subtraction
∗ A ∗B Multiplication
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Function name with usage Description

elementwise_mul(A,B) Element-wise multiplication
scalar_mul(A,α) Matrix/Vector Scalar multiplication

t ranspose(A) Transpose
s ymm(matA,matB,matC, M , N ,α,β) Symmetric Matrix multiply

s y r2k(matA,matB,matC,α,β) Symmetric rank-2k operations
s y rk(matA,matC,α,β) Symmetric rank-k operations

t rmm(matA,matB,α,β) Triangular Matrix multiply

Table 4.2: New Functions supported in PolyMage
where A and B are either matrix or vector; α, β are scalars ; matA,matB,matC are matrices

These overloaded operators allow inferring the dimension of the output from the in-

put dimensions and the computation performed, freeing the programmer from having to

explicitly specify this. For example, in the case of matrix-matrix multiplication of dimen-

sions, say (MxN) and (NxK), the dimensions of the resultant matrix dimensions (MxK)

is automatically inferred from input dimensions and the multiplication operator(*). This

avoids many out of bounds error which can arise by specifying the dimensions(domain)

incorrectly while defining any matrix operation in PolyMage specification.

Several new functions for the commonly used matrix and vector operations are intro-

duced as primitives. The list of these functions is described in Table 4.2.

To illustrate the power of these new functions primitives in PolyMage, consider the

matrix-matrix multiplication specification using the old PolyMage specification as shown

in Figure 3.1. This can be re-written more concisely as shown in Figure 4.2 using the

constructs introduced in this section. Line 5 − 6 represents the definition for the input

matrices. Line 9 represents the matrix multiplication operation. Note that the dimensions

for the matrix C are not specified. The compiler directly infers it to be a NxN matrix.

4.3 Tile Size Selection

This section describes the tile size selection model and illustrates its working with exam-

ples. Tiling or blocking is performed on loop nests to exploit locality in computations. This

helps to improve performance by reusing elements brought into the cache from memory



4.3. Tile Size Selection 25

1 # Parameters
2 N = Parameter ( Int , "N" )
3
4 # Input ma t r i c e s
5 A = Matrix (Double , "A" , [N, N] )
6 B = Matrix (Double , "B " , [N, N] )
7
8 # Matrix m u l t i p l i c a t i o n
9 C = A ∗ B

Figure 4.2: Matrix multiplication code represented in PolyMage

before being evicted. Further, a good tile size is one that is sized proportionately to fit the

elements of the accessed computations perfectly in the cache. Choosing too small a tile

size leaves cache space underutilized while too large a tile size may cause the computation

to overflow the cache causing performance loss.

The existing tile size selection model in PolyMage, discussed in Chapter 3, makes an

assumption that there exists one-to-one mapping between the iterations and the data ac-

cesses. This assumption makes the model inapplicable to matrix operations, as most of

these operations involve reductions. The tile size model proposed here is generic and

works for any arbitrary affine access.

The proposed tile size selection model assigns tile sizes to each dimension(loop) based

on the amount of reuse available along that dimension. The reuse along a dimension

also represents the number of data points that need to be received from the previous tile

along that dimension. Thus, higher reuse implies higher data point movement. Therefore,

increasing the tile size along that dimension, reduces the number of tiles which in turn

reduces the total communication across tiles in the computation.

The reuse along a dimension is used to construct a reuse expression. This reuse expres-

sion is constructed for each group and represents the total memory accessed by a tile. This

is equated to the tile capacity and the solution to this equation gives the tile sizes. The

construction of the equation and the tile size calculation is explained with an example in

the next paragraph.

Consider a naive matrix-matrix multiplication with the standard three dimensional loop
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1 for ( in t i = 0; i <= NI ; i=i+1)
2 for ( in t j = 0; j <= NJ ; j=j+1)
3 for ( in t k = 0; k <= NK; k=k+1)
4 C[ ( i ∗ NJ) + j ] = C[ ( i ∗ NJ) + j ] + (A[ ( i ∗ NK) + k ]
5 ∗ B [ ( k ∗ NJ) + j ] ) ;

Figure 4.3: Generated matrix-matrix multiplication code

nest for multiplying two matrices A and B to yield C as shown in Figure 4.3. Assume that

the loop nests are tiled with tile sizes τi,τ j and τk for loops i, j and k respectively. The

memory accessed by each matrix for this tile is:

τi ∗ τ j elements of matrix C

τi ∗ τk elements of matrix A

τk ∗ τ j elements of matrix B

Hence the tile volume is given by

τi ∗ τ j + τ j ∗ τk + τk ∗ τi = T. (4.1)

In order to utilize the cache efficiently, the tile volume must be equal to the cache size.

To exploit temporal reuse efficiently, the tile sizes of the dimensions with better tempo-

ral reuse should be higher. Keeping this in consideration, let us assume the tile size for

each dimension i to be τi = γi ∗ τ where γi is the dimensional reuse along i. Therefore,

Equation 4.1 can be re-written as:

(γi ∗ γ j + γ j ∗ γk + γk ∗ γi) ∗ τ2 = C. (4.2)

where C represents the cache size. Equation 4.2 represents the reuse expression for the

matrix multiplication example. This equation can then be solved for τ and tile sizes can be

computed.

The reuse along each dimension is calculated by counting the number of temporal and

group temporal reuse along each dimension as proposed by Wolfe et. al [42]. For the

matrix multiplication example, the dimensions i, j have temporal reuse of 1 and k has
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temporal reuse of 2 (Considering both read and write operations for the access C[i][ j]).

These reuse values are normalized and written as :

γi = 0.5,γ j = 0.5,γk = 1

In order to improve auto-vectorization, the tile size of the inner-most loop is fixed 256. In

this case let us assume the inner-most loop is the j loop. The reason for choosing j loop

as the inner-most loop is explained in detail in the next section. Assume an L1 cache size

of 32KB and the data size as the size of double i.e. 8 bytes. Hence, Equation 4.2 can be

re-written as:

(0.5 ∗ τ) ∗ 256+ 256 ∗ (0.5 ∗ τ) + (1.0 ∗ 0.5) ∗ τ2 = (32768/8).

=⇒ 0.5 ∗ τ2 + 256 ∗ τ− 4096= 0.

Solving the above equation yields the roots 15.52 and−527.52. Discarding the negative

root, the tile size for the loops i, j and k can be obtained by multiplying the floor of the

positive root with its corresponding dimension reuse. The final tile sizes obtained are

τi = 7,τ j = 256 and τk = 15. For a matrix size of N I = 2000, NJ = 2300 and NK = 2600

the generated tiled code is shown in Figure 4.4.

Algorithm 3 describes our tile size selection model for an input group G. For each

dimension d of the group, the algorithm computes the dimensional reuse (line 3) along d as

the sum of temporal and group temporal reuse. The number of distinct memory accesses in

G is calculated in line 6. The reuse expression for G can be obtained by first computing the

tile volume, using the number of distinct memory access in a tile and further by expressing

the tile size of each dimension as a factor of dimensional reuse. However, it is desirable

that the innermost dimension has a large tile size when it is vectorizable. Therefore, the tile

size corresponding to the innermost dimension (inner_dim) is set to the smallest of upper

bound on the innermost dimension (obtained in Line 4), or inner_tile_size, an input to the

algorithm (256). The algorithm to find the innermost dimension of a group is described

subsequently in Section 4.5. Further, the algorithm computes the reuse expression (line 7)

and the positive root of Equation 4.2 is used to determine the tile sizes (lines 8-10).
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1

2 for ( in t _T_i = 0; ( _T_i <= 76) ; _T_i = ( _T_i + 1) )
3 for ( in t _T_j = 0; ( _T_j <= 35) ; _T_j = ( _T_j + 1) )
4 for ( in t _T_k = 0; ( _T_k <= 49) ; _T_k = ( _T_k + 1) ) {
5 in t _ct0 = (1999 < ((26 ∗ _T_i ) + 25) ) ? 1999: ((26 ∗ _T_i ) + 25) ;
6 in t _ct1 = (1999 < ((26 ∗ _T_i ) + 25) ) ? 1999: ((26 ∗ _T_i ) + 25) ;
7 for ( in t i = (26 ∗ _T_i ) ; ( i <= _ct1 ) ; i = ( i + 1) ) {
8 in t _ct4 = (2299 < ((64 ∗ _T_j ) + 63) ) ? 2299: ((64 ∗ _T_j ) + 63) ;
9 in t _ct5 = (2299 < ((64 ∗ _T_j ) + 63) ) ? 2299: ((64 ∗ _T_j ) + 63) ;

10 for ( in t j = (64 ∗ _T_j ) ; ( j <= _ct5 ) ; j = ( j + 1) ) {
11 in t _ct2 = (2599 < ((53 ∗ _T_k ) + 52) ) ? 2599: ((53 ∗ _T_k ) + 52) ;
12 in t _ct3 = (2599 < ((53 ∗ _T_k ) + 52) ) ? 2599: ((53 ∗ _T_k ) + 52) ;
13 for ( in t k = (53 ∗ _T_k ) ; (k <= _ct3 ) ; k = (k + 1) )
14 C[ ( i ∗ NJ) + j ] = C[ ( i ∗ NJ) + j ] + (A[ ( i ∗ NK) + k ]
15 ∗ B [ ( k ∗ NJ) + j ] ) ;
16 }
17 }
18 }

Figure 4.4: Generated tiled matrix-matrix multiplication code

Table 4.3 represents the reuse expression in Column 3 for accesses shown in Column 1.

The number of distinct accesses per tile is given in Column 2. In cases of loop scaling

transformations (α≥ 1 in Row 2), the number of distinct accesses will still be equal to the

tile size t i.

Another interesting scenario is with accesses of the form a[i-j] where the tile volume is

still the sum of the tile sizes along the dimensions i and j. This is explained with example

code from the DSP domain shown in Figure 4.5. The code represents only the intra-tile

loops of the tiled code. The tile size for dimension i is denoted as τ1 and that of j is denoted

as τ2. Then the amount of memory accessed by the tiled loops ii and j j by array y bs is τ1

and by array window is τ2. The memory required for yds is calculated as (τ1−0)−(0−τ2)

which is equal to τ1+ τ2. The reuse expression can be constructed as (τ1) + (τ1+ τ2) +

(τ2) = T , where τ1 and τ2 can be replaced with the corresponding dimensional reuse

scores. Reuse expressions can be constructed for multidimensional array access as shown

in the last row of Table 4.3.

Algorithm 4 shows how the new tile size selection model fits in the Cost function used by

the dynamic programming based fusion model. Lines 2-4, checks if the group contains any

Reduction operations. In case of reduction operations, the relat ive_overlap calculation
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Algorithm 3: Proposed tile size computation
Input: group G, cache_size, inner_tile_size, inner_dim
Output: Tile sizes of each dimension of G

1 Function ComputeTileSizes(G, cache_size, inner_tile_size, inner_dim):
2 nDims ← numDim(G)
3 dim_reuse [1...nDims]← getDimReuse(G)
4 inner_dim_size ← getInnerDimSize(G)
5 t ile_sizes [inner_dim]← min (inner_dim_size,

inner_t ile_size )
6 mem_access ← distinct memory references in G
7 reuse_eqn← getReuseEquation (mem_access, dim_reuse, inner_dim,

t ile_size )
8 root ← floor(positive_root(reuse_eqn))
9 for each i ∈ nDims do

10 t ile_sizes [i]← dim_reuse[i] * root
11 endfor
12 return t ile_sizes

1 for ( in t i i = 0; ( i i <= t1 ) ; i i = ( i i + 1) )
2 for ( in t j j = 0; ( j j <= t2 ) ; j j = ( j j + 1) )
3 ybs [ i i ] += ( yds [ ( (M + i i ) − j j ) ] ∗ window[ j j ] ) ;

Figure 4.5: Generated DSP code from vuvuzela filter

is not required. This is because rectangular tiling is performed for these groups. The

algorithm, calls the ComputeTileSize function described in Algorithm 3 (shown in Line

18). The tile size selection model requires the preferred innermost dimension which is

calculated in Line 17. The model to find a good inner-most dimension is described in

Section 4.5. Lines 29-31 represent the cost calculation of rectangular tiled groups. Thus,

the parameters with relative overlap size are dropped.

To summarize, the tile size selection method is sufficiently generic to be applicable for

arbitrary affine accesses. The tile size selection model is robust enough to be extended for

multilevel tiling with minor modifications to Algorithm 3.
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Algorithm 4: Updated cost function for DP based fusion
Input: group H, L1CacheSize, L2CacheSize, InnerMostTileSize, NCores
Output: Cost of group H and its tileSizes

1 Function Cost(H, L1CacheSize, L2CacheSize, InnerMostTileSize, NCores):
2 if has ReductionFunctions(H) then
3 reduction← True
4 〈cost, tileSizes〉 ← CostForCacheSize(H, L1CacheSize, NCores,

InnerMostTileSize, reduction)
5 end
6 else
7 if not constantDependenceVectors(H) then
8 return∞ /* Overlap tiling not feasible */
9 end

10 reduction← False
11 〈cost, tileSizes, overlapSize〉 ← CostForCacheSize(H, L1CacheSize, NCores,

InnerMostTileSize, reduction)
if overlapSize > TileVolume(H, tileSizes) then

12 〈cost, tileSizes, overlapSize〉 ← CostForCacheSize(H, L2CacheSize,
NCores, InnerMostTileSize, reduction)

13 end
14 end
15 return 〈cost, tileSizes〉
16 Function CostForCacheSize(H, cacheSize, NCores, innerMostTileSize, reduction):
17 liveout_size← liveOutsSize(H)
18 totalFootprint← intermediateBuffersSize(H) + liveout_size
19 tileFootprint← min(totalFootprint÷NCores,cacheSize)
20 innerMostDim← IntratileOptimize(H)
21 tileSizes← ComputeTileSizes(H, tileFootprint, innerMostTileSize,

innerMostDim)
22 livein_tile_size← liveInTileSize(H, tileSizes)
23 liveout_tile_size← liveOutTileSize(H, tileSizes)
24 comp_vol← ComputeTileVolume(H, tileSizes)
25 n_tiles← totalFootprint ÷ tileFootprint
26 dim_diff← dimSizeStandardDeviation (H)
27 if reduction = False then
28 overlapSize← OverlapSize(H, tileSizes)
29 relative_overlap← overlapSize ÷ tileFootprint
30 cost← w1×(livein_tile_size + liveout_tile_size)÷comp_vol −

w2 × ((n_tiles + NCores−1) % NCores) +
w3 × relative_overlap + w4 × dim_diff

31 end
32 else
33 cost← w1×(livein_tile_size + liveout_tile_size)÷comp_vol −

w2 × ((n_tiles + NCores−1) % NCores) +
w4 × dim_diff

34 end
35 return 〈cost, tileSizes〉



4.4. Mapping to Function Calls 31

Table 4.3: Reuse expression

Access Number of distinct accesses Reuse expression

a[i] τi γi ∗ τ
a[α ∗ i] τi γi ∗ τ
a[i + j] τi + τ j (γi + γ j) ∗ τ
a[i − j] τi + τ j (γi + γ j) ∗ τ
a[i][ j] τi ∗ τ j (γi ∗ γ j) ∗ τ

4.4 Mapping to Function Calls

This section describes the heuristic used to map PolyMage functions into highly tuned BLAS

implementations from OpenBLAS or Intel MKL and FFTW subroutine calls for computing

Fourier transforms. As alluded to in Section 1, there exist highly optimized routines for

linear algebra computations. Hence, exploiting the performance provided by these libraries

is essential for generating optimal performance.

In order to map basic matrix operations to optimized BLAS routines, an idiom recogni-

tion stage is incorporated. This approach allows to maintains backward compatibility. This

allows the optimization to be performed even in applications where the old constructs of

PolyMage specification are used. BLAS routines are invoked only when they are profitable.

It is well known that BLAS calls are not profitable for small matrix sizes and this has been

extensively discussed in the past many works [35, 13].

The idiom recognition algorithm, traverse the polyhedral representation (PolyAST) of

the function’s expression tree and attempt to match it with the set of library routines. If a

match is found and the mapping is profitable, the schedule is modified to generate a library

call instead of generating code for the actual computation. BLAS routines provide sub-par

performance for small matrix sizes and hence operations involving matrix-matrix (vector)

multiplications are mapped to BLAS routines only if M ∗N ∗K ≥ (256)3 †, where M , N , and

K are the upper bounds of the loops representing the computation. This simple heuristic

is used to determine the profitability of invoking the library call. Fourier transforms are

†This value was obtained experimentally on our setup by measuring BLAS performance while sweeping
the design space. This value also correlates with prior observations in [13]
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1 cblas_dgemm ( CblasRowMajor , CblasNoTrans , CblasNoTrans ,
2 NI , NJ , NK, 1 , A , NK, B , NJ , 1 , C , NJ) ;

Figure 4.6: Generated matrix-matrix multiplication code with mapping to BLAS call

1 f f t w _ i n i t _ t h r e a d s () ;
2 f f tw_plan_wi th_nthreads ( omp_get_max_threads () ) ;
3 f f tw_p lan_var = f f tw_p lan_df t_1d (220861 ,
4 r e i n t e r p r e t _ c a s t<f f tw_complex >( _arr_6_18 ) ,
5 r e i n t e r p r e t _ c a s t<f f tw_complex >( _arr_6_19 ) ,
6 FFTW_FORWARD, FFTW_ESTIMATE) ;
7 f f tw_execute (( f f tw_p lan ) f f tw_p lan_var ) ;
8 f f tw_des t roy_p lan (( f f tw_p lan ) f f tw_p lan_var ) ;

Figure 4.7: Generated FFTW call for upsampling

always mapped to FFTW library call when a suitable computation is found since FFTW

library calls reduce the complexity of computing discrete fourier transform from O (N 2) to

O (N log N).

Further, our approach is modular and can be extended to map functions calls from

any new library with appropriate heuristics (for example libxsmm [13], MKL DNN [15]).

Our approach is architecture and library agnostic and hence, can benefit from any perfor-

mance advancements in linear algebra libraries. In other words, the modular approach

in the backend and abstraction in PolyMage specification, allows libraries to be swapped

seamlessly.

Our approach also allows us to exploit locality across multiple BLAS calls in cases where

these functions have input data reuse. These functions are tiled at outer levels and com-

putations within the tile are mapped to BLAS routines. However, for the scope of the

benchmarks investigated in this work no significant performance benefits were seen. Fig-

ure 4.6 shows the code generated when the idiom recognition phase recognizes the matrix

multiplication computations as shown in Figure 4.2 and maps the computation to the BLAS

dgemm(double precision matrix multiplication) call. Note that due to the backward com-

patibility of our approach, the optimization of mapping to a BLAS call when profitable is

successful for the code written both in the form given in Figure 3.1 and Figure 4.2. Simi-

larly, Figure 4.7 shows the sample code when a computation is mapped to an FFTW call.
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4.5 Intra-tile Optimization

An optimization which helps improve the performance by providing code which exploits

auto-vectorization by the native compiler is explained in this section. Exploiting vector-

ization derives rich performance benefits for the code on modern wide-SIMD machines.

PolyMage relies on host compilers like gcc/icc for auto-vectorization. These compilers

generate efficient vector code when

• the innermost dimension is parallel and

• the innermost dimension has stride-0 or stride-1 accesses.

PolyMage’s intra-tile optimization mechanism is responsible to find the best vectorizable

innermost dimension for a given group. A group in PolyMage represents a set of functions

that can be tiled. Intra-tile optimization phase employs Algorithm 5 to try to determine a

Algorithm 5: Intra-tile Optimization
Input: group (G)
Output: Innermost dimension for each function in G

1 Function IntratileOptimize(G):
2 for each f unct ion ( f ) ∈ group (G) do
3 for each dimension (d) ∈ f unct ion ( f ) do
4 s← getNumSpatialReuse(d, f )
5 t← getNumTemporalReuse(d, f )
6 a← getTotalAccess(d, f )
7 v← isVectorizable(d, f )
8 score[d]← score[d] +

(2 ∗ s) + (4 ∗ t) + (8 ∗ v)− (16 ∗ (a− s− t))
9 endfor

10 endfor
11 inner_dim← getDimWithMaxScore(score)
12 return inner_dim

“vectorization friendly“ dimension to be at the innermost level. Assuming each dimension

d of the input group G is the innermost dimension, the algorithm finds, per iteration of the

innermost dimension:

• the number of memory accesses which have spatial reuse (s),
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• the number of memory accesses which have temporal reuse (t) and

• the total number of distinct memory accesses (a).

This corresponds to lines 4-6 in Algorithm 5. A dimension is considered vectorizable (v=1)

if it is parallel and does not result in non-contiguous accesses in the innermost iteration

(line 7). The score for the dimension is calculated using the heuristic in line 8 which

favours a parallel dimension that has stride-0 access (temporal reuse), stride-1 access (spa-

tial reuse) and smaller number of accesses with high scatter-gather distances. The intra-tile

iterator corresponding to the dimension with the highest score is permuted to the inner-

most level of the loop nest. This loop is marked vectorizable if it is parallel.

For example, consider a naive matrix-matrix multiplication with three dimensional loop

nest as in Figure 4.3. The scores for each dimension (loop) is shown in Table 4.4. The loop

k carries a dependence while the loop i, when permuted to the innermost level, results in

non-contiguous accesses for arrays C and A. Hence both i and k loops are not considered

vectorizable. The algorithm finds the highest score for the j loop as it is parallel and all

arrays have stride-0 and stride-1 accesses only. The intra-tile iterator corresponding to

loop j is permuted to the innermost level. The final tiled code after applying intra-tile

optimization which permutes the j loop is shown in Figure 4.8.

Table 4.4: Intra-tile optimization score for matmul

dim s t v a score

i 0 1 false 4 -44
j 3 1 true 4 18
k 1 2 false 4 -6

4.6 Fusion for Reductions

The existing Dynamic Programming (DP) based fusion model [19] is extended to support

fusion and tiling of reduction operations. These operations are tiled with rectangular tiles

only when dependences along all the dimensions are non-negative. Dimensions of two
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1

2 for ( in t _T_i = 0; ( _T_i <= 76) ; _T_i = ( _T_i + 1) )
3 for ( in t _T_j = 0; ( _T_j <= 35) ; _T_j = ( _T_j + 1) )
4 for ( in t _T_k = 0; ( _T_k <= 49) ; _T_k = ( _T_k + 1) )
5 {
6 in t _ct0 = (1999 < ((26 ∗ _T_i ) + 25) ) ? 1999: ((26 ∗ _T_i ) + 25) ;
7 in t _ct1 = (1999 < ((26 ∗ _T_i ) + 25) ) ? 1999: ((26 ∗ _T_i ) + 25) ;
8 for ( in t i = (26 ∗ _T_i ) ; ( i <= _ct1 ) ; i = ( i + 1) )
9 {

10 in t _ct2 = (2599 < ((53 ∗ _T_k ) + 52) ) ? 2599: ((53 ∗ _T_k ) + 52) ;
11 in t _ct3 = (2599 < ((53 ∗ _T_k ) + 52) ) ? 2599: ((53 ∗ _T_k ) + 52) ;
12 for ( in t k = (53 ∗ _T_k ) ; (k <= _ct3 ) ; k = (k + 1) )
13 {
14 in t _ct4 = (2299 < ((64 ∗ _T_j ) + 63) ) ? 2299: ((64 ∗ _T_j ) + 63) ;
15 in t _ct5 = (2299 < ((64 ∗ _T_j ) + 63) ) ? 2299: ((64 ∗ _T_j ) + 63) ;
16 for ( in t j = (64 ∗ _T_j ) ; ( j <= _ct5 ) ; j = ( j + 1) )
17 C[ ( i ∗ NJ) + j ] = C[ ( i ∗ NJ) + j ] + (A[ ( i ∗ NK) + k ]
18 ∗ B [ ( k ∗ NJ) + j ] ) ;
19 }
20 }
21 }

Figure 4.8: Generated tiled matrix-matrix multiplication code with intra tile optimization

functions are fused only if a dependence is not satisfied at that level, i.e., the corresponding

loop does not carry a dependence. This check is performed by comparing the memory

accesses of the uses with the definition of the function in the specification [24].

For example, consider the code in Figure 4.9. The code corresponds to a matrix mul-

tiplication followed by adding a bias to all the elements of the resultant matrix. When

dynamic programming based fusion model is run, the algorithm first finds all the loops

which carry the dependence. The dependences which exist include:

• RAW dependence on line 4 by tmp[i1][j1] and

• RAW dependence between write of tmp[i1][j1] on Line4 and read of tmp[i2][k2]

on line7.

The first dependence is carried by loop k1 (Line 3). The second dependence is satisfied

because the two loop nests are distributed. Note that loops i1, j1, i2, and j2 do not carry

any dependence. Next, the model performs dimension matching, also called as alignment,

to figure out the loops which can be fused together. This algorithm is similar to that of
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1 for ( i1 = 0; i < NI ; i++)
2 for ( j1 = 0; j < NJ ; j++)
3 for (k1 = 0; k < NK; ++k)
4 tmp[ i1 ] [ j 1 ] += A[ i1 ] [ k1 ] ∗ B[k1 ] [ j 1 ] ; \\S1
5 for ( i2 = 0; i < NI ; i++)
6 for ( j2 = 0; j < NJ ; j++)
7 out [ i2 ] [ j 2 ] = tmp[ i2 ] [ j 2 ] + b [ j 2 ] ; \\S2

Figure 4.9: Matrix-Matrix Multiplication followed by bias addition

1 for ( i1 = 0; i < NI ; i++)
2 for ( j1 = 0; j < NJ ; j++) {
3 for (k1 = 0; k < NK; ++k) {
4 tmp[ i1 ] [ j 1 ] += A[ i1 ] [ k1 ] ∗ B[k1 ] [ j 1 ] ; \\S1
5 }
6 out [ i1 ] [ j 1 ] = tmp[ i1 ] [ j 1 ] + b [ j 1 ] ; \\S2
7 }

Figure 4.10: Fused matrix-matrix multiplication followed by bias addition

the dimension matching algorithm discussed in Mullapudi et. al. [24]. The dimension

matching algorithm tries to match each dimension of the statements that are considered

for fusion. Fusion is possible only if the matching is successful. Dimension matching fails

if any of the dimension (considered for matching) carries a dependence. For the example,

the dimension matching for Figure 4.9 is:

S1: [i1, j1, k1] -> [1, 2, 3]

S2: [i2, j2, - ] -> [1, 2, -]

This means that the loop i1 is matched with i2 and similarly loop j1 is matched with loop

j2. This satisfies the second dependence even when the loops are fused and also does not

violate any other dependence. Hence, this is chosen as the final schedule. The final fused

code is shown in Figure 4.10.

Another important optimization performed during this phase is that, when a group does

not have communication free parallel loop, the heuristic finds a parallel loop at some inner

level (if it exists) and permutes it to the outermost level. Performing this optimization does

not violate any dependences because the optimization is applied to each group. These
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groups are tilable and hence permutable. This optimization is useful in case of gemver

benchmark. The benefits of this optimization is discussed in Chapter 5.

4.7 Summary

To summarize, the newly added constructs to PolyMage DSL enables programmers to con-

cisely represent basic matrix operations. With enhancements to the fusion and tiling model

to handle reduction operations, basic matrix operations like matrix-vector and matrix-

matrix applications can be tiled and parallelized. Further, implementation of an intra-tile

optimization pass enhanced PolyMage’s ability to find vector friendly loops. PolyMage’s tile

size selection model is enabled to handle arbitrary affine accesses. The idiom recognition

phase is now able to map matrix multiplications to optimized BLAS routines, whenever

profitable. Finally, storage optimizations of PolyMage are performed and optimized C++

code is generated. The impact of these optimizations on performance is discussed in Chap-

ter 5.
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Chapter 5

Experimental Evaluation

This chapter describes the details of our experiments. Section 5.1 describes the experimen-

tal setup used to evaluate the benchmarks. Section 5.2 describes the benchmarks used for

evaluation. Section 5.3 presents the experimental results and analysis of performance.

The baseline for comparison is PolyMage, with tile sizes obtained using the approach

of Jangda and Bondhugula [19]. The baseline is compared against PolyMage with all the

optimizations proposed in this thesis implemented (optimizations discussed in Chapter 4).

The optimizations presented in this thesis for linear algebra computations are referred to as

PolyMage-opt-BLAS or PolyMage-opt-FFT for arbitrary affine computations involving Fourier

transforms in the rest of this section.

5.1 Experimental Setup

The experiments are run on a NUMA based, dual socket multicore system with Intel Xeon

v3 (Haswell) processors. The complete details are provided in Table 5.1. Experiments

are also run on a 64 core, 2.8GHz AMD Opteron X86 system with 4 sockets to show the

architecture agnostic nature of the optimizations proposed in this work. The AMD Opteron

system has 16KB L1d cache, 64KB L1i cache, 2MB L2 cache, and 6MB L3 cache.

For all experiments, five runs for each of the benchmarks were taken. The first two

runs were discarded and the average of the next three was taken as the execution time

39
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of the benchmark. PolyMage maps matrix operations to BLAS implementations provided

Table 5.1: System details

Processors 2-socket Intel 4-socket AMD
Xeon E5-2630 v3 Opteron 6386 SE

Clock 2.40 GHz 2.80 GHz
Cores 16 (8 per socket) 32 (8 per socket)
Hyperthreading disabled disabled
Private caches 64 KB L1 cache 80 KB L1 cache

512 KB L2 cache 2048 KB L2 cache
Shared cache 20,480 KB L3 cache 2,8 MB L3 cache
Memory 64 GB DDR4 128 GB DDR4

Matlab version 9.3.0.713579 (R2017b)
Scipy version 1.0.0

Compiler Intel C/C++ (icc/icpc) 18.0.1 gcc 4.8.5
Compiler flags -O3 -xhost -qopenmp -O3 -fopenmp -march=native

-fma -ipo -ftree-vectorize -fPIC
OS Linux kernel 3.10.0 Linux kernel 3.10.0

64-bit CentOS 7.3 64-bit CentOS 7

by Intel’s Math Kernel Library ∗(MKL, version 18.0.1) [23] and OpenBLAS for the AMD

system.

Comparison of performance with Pluto [26] (version 0.11.4) and PPCG [28](version

0.07) which are state-of-the-art polyhedral auto-parallelizers is also performed. The flags

-tile and -parallel were used with Pluto. PPCG was used to generate tiled, openmp-

parallelized, C code using the flags -target=c, -openmp and -tile. Loop nests were tiled

with default tile sizes (32 for Pluto and 16 for PPCG).

Matlab and Python’s scipy libraries provide optimized implementations of some rou-

tines functions in the digital signal processing domain. Vendor-specific python 3.6 pack-

ages from Intel’s distribution was used for python [14], which optimizes numpy and scipy

routines using MKL. These routines were faster by a factor of 2× over default scipy versions

that are available with standard Linux distributions.

∗For 2 benchmarks (symm and trmm) code generated by PPCG failed to compile with the Intel compilers.
Thus to keep the comparison fair gcc compiler v4.8.5 and OpenBLAS v0.2.20 is used for all configurations.
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5.2 Benchmarks

The approach presented in this thesis is evaluated on benchmarks from a wide range of

domains consisting of linear algebra computations (13 benchmarks from PolyBench [27]

suite), Digital Signal Processing (2 filters) and image processing benchmarks (6 bench-

marks from PolyMage [24]).

5.2.1 PolyBench

Table 5.2: PolyBench benchmarks used in evaluation

Benchmark Description

2mm 2 Matrix Multiplications
3mm 3 Matrix Multiplications
atax Matrix Transpose and Vector Multiplication
bicg BiCG Sub Kernel of BiCGStab Linear Solver

doitgen Multi-resolution analysis kernel (MADNESS)
gemm Matrix-multiply

gemver Vector Multiplication and Matrix Addition
gesummv Scalar, Vector and Matrix Multiplication

mvt Matrix Vector Product and Transpose
symm Symmetric matrix-multiply
syr2k Symmetric rank-2k update

syrk Symmetric rank-k update
trmm Triangular matrix-multiply

The PolyBench [27] is a benchmark suite of numerical computations which have been

extracted from applications of various domains. For evaluation, the basic linear algebra

computations are used. The computation names of the benchmarks and their descriptions

are shown in Table 5.2.

5.2.2 Digital Signal Processing

Two filters - unwanted spectral and vuvuzela are used as benchmarks from the Digital Sig-

nal Processing(DSP) domain. The unwanted spectral filter uses a low pass filter to remove

noise in the input signal. The vuvuzela filter is used to filter out the vuvuzela noise from the
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input signal. These filters have reduction operators with arbitrary affine accesses in their

loop nests as shown in Figure 4.5. It is hard to represent these routines as basic matrix op-

erations and hence domain experts rely on optimized implementations from vendors like

Matlab (with parallel computing support) and Intel’s Scipy for high performant implemen-

tations. Performance of PolyMage-opt-FFT with these optimized libraries is compared for

DSP benchmarks.

5.2.3 Image Processing

For image processing applications, Jangda and Bondhugula [19] propose several optimiza-

tions which are implemented in PolyMage. Hence for applications in image processing do-

main their approach serves as a strong baseline for comparison with the tile size selection

model in our approach. Six image processing pipelines are picked, namely Unsharp Mask,

Harris Corner, Bilateral Grid Multiscale Interpolate, Camera Pipeline, and Pyramid Blend.

Details regarding these benchmarks are available at [19].

5.3 Performance Analysis

This section describes the performance of the benchmarks written in PolyMage. It also

analyzes the benefits of optimizations discussed in Chapter 4. Comparison with state-of-

the-art approaches/libraries in respective domains is also discussed.

5.3.1 Linear Algebra Benchmarks

The execution times for linear algebra benchmarks from PolyBench suite for our complete

approach - PolyMage-opt-BLAS (discussed in Chapter 4), and that of Pluto, PPCG, baseline

PolyMage, and BLAS configurations are listed in Table 5.3 and Table 5.4 for the small

and extralarge datasets respectively. The tables present the execution times for 1 thread

and 16 threads for each configuration. For BLAS configuration (Columns 7 and 8) all

basic matrix operations are mapped to optimized BLAS routines in PolyMage, ignoring the
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Table 5.3: Execution times (in ms) with small input dataset for linear algebra benchmarks

from PolyBench suite on Intel Xeon

Benchmark Pluto PPCG PolyMage BLAS PolyMage-opt-BLAS

1 16 1 16 1 16 1 16 1 16

gemm 0.558 0.095 0.922 0.441 0.914 0.913 0.219 0.081 0.259 0.043

gemver 0.122 0.034 0.178 0.062 0.053 0.022 0.048 0.049 0.059 0.109

gesummv 0.104 0.040 0.094 0.042 0.011 0.010 0.012 0.012 0.015 0.021

symm 0.431 0.391 1.165 0.984 1.109 1.120 0.063 0.069 0.262 0.212

syr2k 0.600 0.116 0.616 0.230 0.682 0.675 0.236 0.349 0.427 0.153

syrk 0.413 0.076 0.411 0.147 0.340 0.333 0.267 0.201 0.393 0.099

trmm 0.324 0.106 0.746 0.367 0.797 0.814 0.054 0.050 0.129 0.142

2mm 0.532 0.140 0.823 0.609 0.724 0.735 0.220 0.122 0.205 0.094

3mm 1.126 0.267 1.293 0.974 1.286 1.317 0.379 0.168 0.365 0.148

atax 0.104 0.033 0.109 0.046 0.020 0.015 0.015 0.019 0.027 0.022

bicg 0.113 0.039 0.111 0.046 0.023 0.016 0.013 0.017 0.024 0.021

doitgen 1.322 4.088 1.300 3.857 0.930 0.948 - - 0.224 0.070

mvt 0.136 0.026 0.106 0.043 0.018 0.015 0.017 0.016 0.021 0.022

heuristic mentioned in Section 4.4. In the specific case of the doitgen benchmark, we do

not map to BLAS calls as it involves multiplications of three dimensional matrices and the

corresponding entries for this are marked with a ’-’.

Figure 5.2 also plots the speedups for the extralarge dataset for each of these configu-

rations over the baseline PolyMage.

All linear algebra benchmarks from PolyBench suite involve reduction operations and

hence the baseline PolyMage does not perform any optimizations that are described in

Chapter 4. Hence, with PolyMage-opt-BLAS observes a geometric mean speedup of 2.6×

and 21.7× over PolyMage for small as well as extralarge datasets respectively for 16 threads
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Figure 5.1: Speedup over PolyMage for LA benchmarks for small dataset with 16 threads
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Figure 5.2: Speedup over PolyMage for LA benchmarks for extralarge dataset with 16

threads
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Table 5.4: Execution times (in s) with extralarge input dataset for linear algebra bench-

marks from PolyBench suite on Intel Xeon

Benchmark Pluto PPCG PolyMage BLAS PolyMage-opt-BLAS

1 16 1 16 1 16 1 16 1 16

gemm 9.541 0.784 12.09 0.958 30.10 30.29 2.459 0.234 2.462 0.230

gemver 0.165 0.031 0.356 0.046 0.053 0.043 0.051 0.047 0.054 0.026

gesummv 0.048 0.011 0.102 0.014 0.014 0.014 0.013 0.013 0.017 0.009

symm 24.36 24.13 22.96 9.686 34.93 34.86 0.503 0.493 0.503 0.493

syr2k 9.101 1.342 9.051 1.278 36.78 36.90 1.618 0.269 1.618 0.268

syrk 6.150 0.907 6.308 0.895 13.35 13.39 2.973 0.145 2.973 0.144

trmm 5.455 0.491 14.00 1.255 21.12 21.24 0.311 0.266 0.311 0.266

2mm 9.503 0.751 13.96 1.391 32.91 33.06 2.740 0.272 2.741 0.269

3mm 18.43 1.458 20.34 1.901 44.30 44.39 4.457 0.438 4.460 0.431

atax 0.031 0.005 0.052 0.006 0.007 0.007 0.008 0.008 0.009 0.002

bicg 0.031 0.005 0.052 0.006 0.007 0.006 0.007 0.006 0.007 0.002

doitgen 3.124 1.030 3.981 0.931 4.366 4.299 - - 0.894 0.098

mvt 0.229 0.026 0.171 0.024 0.028 0.023 0.027 0.024 0.030 0.020

(maximum of 21× and 137× for small and extralarge datasets). For small datasets (Ta-

ble 5.3), PolyMage-opt-BLAS does not invoke routines from BLAS libraries. Instead, matrix

operations are tiled and parallelized using openmp. Even though both Pluto and PPCG per-

form the similar optimizations, both of them lack a tile size selection model. Apart from

good tile sizes, when the loop bounds for a particular dimension are very small, PolyMage-

opt-BLAS chooses not to tile the loop nest. Hence, there is no loop tiling overhead in such

small cases. Therefore, an improvement of 60% over Pluto and 3.17× over PPCG for small

datasets with 16 threads (Table 5.3) is observed. For the small dataset, in the case of

gemver a slowdown of 70% over Pluto for 16 threads is observed. This is because (i) Pluto

finds a different loop permutation and hence a better fusion that exploits register reuse
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(ii) The execution times of PolyMage-opt-BLAS includes the time spent in allocation and

initialization of matrices which are not measured in Pluto. This overhead appears to be

significant in cases where the execution times are very small. For the same reason, in the

case of syr2k, syrk, and trmm a slowdown of about 25% over Pluto for small datasets is

observed.

Our heuristic described in Section 4.4 maps matrix-matrix multiplications for large and

extralarge sizes to Intel MKL’s implementation of BLAS. Hence in case of extralarge large

datasets with 16 threads (Table 5.4), PolyMage-opt-BLAS provides a geomean improve-

ment of 3.6× and 4.1× over Pluto and PPCG respectively.

Further, for extralarge datasets with 16 threads, a geomean performance improvement

of 39% over Intel MKL is observed. This improvement is observed in case of gemver,

gesummv, atax, bicg, and mvt, significant performance improvements ranging from 77%

(gemver) to 4.7× (atax) over MKL is observed. This is due to two reasons: (i) Despite

the extralarge dataset, the computations involved are matrix-vector multiplications and

the dataset is still small to be profitably mapped to BLAS routines. Hence, our heuristic in

Polymage-opt-BLAS does not call routines from Intel MKL; instead it performs rectangular

tiling and parallelization of the loop nest. (ii) In case of gemver, there are other matrix-

vector operations, that can not be mapped to BLAS routines. However, PolyMage-opt-BLAS

performs tiling and parallelization of those routines as well, thus giving significant perfor-

mance improvements over Intel MKL.

For symm and doitgen, loop carried WAR dependences on temporary variables prevents

Pluto from tiling and parallelizing the loop nests. However, in our approach these depen-

dences do not exist as these temporary variables inside a loop nest are represented using

arrays whose dimensionality is equal to the nesting depth of the statement containing the

definition of the scalar variable. Hence for these benchmarks, significant performance im-

provement of 49× and 10.9× is noticed, for symm and doitgen respectively, over Pluto. In

case of gemver, for extralarge datasets an improvement of 18% over Pluto is noticed. Here,

the improvement is due to better tile sizes found for each group by PolyMage-opt-BLAS.

Tables 5.5, 5.6 and 5.7 show the execution times of mini, medium and large datasets
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Table 5.5: Execution times (in ms) with mini input dataset for linear algebra benchmarks

from PolyBench suite on Intel Xeon

Benchmark Pluto PPCG PolyMage BLAS PolyMage-opt-BLAS

1 16 1 16 1 16 1 16 1 16

gemm 0.037 0.023 0.048 0.052 0.037 0.037 0.022 0.021 0.012 0.012

gemver 0.022 0.016 0.029 0.020 0.007 0.006 0.006 0.006 0.018 0.089

gesummv 0.021 0.024 0.017 0.015 0.001 0.002 0.002 0.003 0.006 0.017

symm 0.022 0.018 0.042 0.039 0.036 0.036 0.007 0.009 0.015 0.029

syr2k 0.037 0.019 0.028 0.033 0.038 0.034 0.023 0.037 0.036 0.015

syrk 0.024 0.020 0.015 0.027 0.022 0.023 0.022 0.031 0.032 0.015

trmm 0.027 0.053 0.032 0.028 0.023 0.023 0.003 0.008 0.009 0.021

2mm 0.046 0.046 0.044 0.030 0.034 0.039 0.019 0.048 0.012 0.021

3mm 0.074 0.058 0.060 0.045 0.044 0.049 0.029 0.060 0.018 0.038

atax 0.020 0.019 0.018 0.013 0.003 0.001 0.002 0.001 0.014 0.062

bicg 0.024 0.021 0.018 0.020 0.002 0.002 0.003 0.002 0.015 0.086

doitgen 0.118 0.670 0.084 0.540 0.011 0.022 - - 0.019 0.009

mvt 0.020 0.009 0.018 0.016 0.002 0.002 0.003 0.002 0.024 0.135

respectively. PolyMage-opt-BLAS performs better than state-of-the-art consistently across

all dataset sizes. Thus the optimizations approaches presented in this work are extremely

robust and show good weak scaling properties as well.

The results of the experiments run on the AMD Opteron machine with extralarge dataset

are presented in Table 5.8. PolyMage-opt-BLAS is architecture agnostic and shows good

improvement on this system as well for the extralarge dataset over state-of-the-art. Similar

performance improvement trends were obtained on the mini, small, medium and large

datasets.

The ability of our approach to utilize optimized BLAS routines when the size of the

matrices are large, or perform polyhedral optimizations for smaller problem sizes allows
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Table 5.6: Execution times (in ms) with medium input dataset for linear algebra bench-

marks from PolyBench suite on Intel Xeon

Benchmark Pluto PPCG PolyMage BLAS PolyMage-opt-BLAS

1 16 1 16 1 16 1 16 1 16

gemm 14.17 1.283 19.71 4.028 20.38 20.68 5.318 0.552 6.089 0.481

gemver 1.915 0.235 1.402 0.326 0.427 0.448 0.448 0.448 0.504 0.506

gesummv 0.652 0.123 0.789 0.185 0.089 0.086 0.091 0.099 0.081 0.069

symm 31.03 18.82 41.68 16.05 25.51 26.25 1.284 1.299 6.475 2.947

syr2k 14.55 1.945 12.08 3.622 16.16 16.28 4.161 1.128 9.894 1.545

syrk 10.42 1.399 10.00 2.777 8.161 7.576 5.971 0.648 8.166 1.346

trmm 10.05 1.152 27.45 3.943 22.07 21.45 1.005 1.049 3.799 3.816

2mm 21.98 2.235 27.76 6.090 25.17 24.09 7.100 1.140 7.015 0.749

3mm 38.01 3.692 30.58 8.463 33.12 33.38 10.06 1.473 9.705 1.113

atax 0.950 0.235 0.895 0.209 0.208 0.208 0.200 0.211 0.236 0.138

bicg 0.927 0.235 0.879 0.255 0.201 0.206 0.201 0.206 0.239 0.159

doitgen 11.38 15.19 12.65 15.92 11.36 12.25 - - 4.268 0.522

mvt 2.065 0.222 1.192 0.203 0.186 0.191 0.215 0.227 0.244 0.135

us to incorporate the best of both world.

Comparison with Polly [18]

Polly [18] is a loop and data-locality optimization framework for LLVM. It uses a mathe-

matical representation based on integer polyhedra to analyze and optimize the memory

access pattern of a program with the help of ISL [38].

Table 5.9 and Table 5.10 present execution times for Polly and PolyMage-opt-BLAS on

Intel and AMD processors respectively. Polymage-opt-BLAS provides an average improve-

ment of 4.61× on the Intel Xeon machine and 1.59× on the AMD Opteron machine for

a 16-threads execution over Polly. This performance benefit of PolyMage-opt-BLAS over
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Table 5.7: Execution times (in s) with large input dataset for linear algebra benchmarks

from PolyBench suite on Intel Xeon

Benchmark Pluto PPCG PolyMage BLAS PolyMage-opt-BLAS

1 16 1 16 1 16 1 16 1 16

gemm 0.812 0.094 1.303 0.132 1.618 1.618 0.275 0.030 0.274 0.030

gemver 0.050 0.005 0.094 0.008 0.014 0.010 0.014 0.012 0.016 0.007

gesummv 0.010 0.003 0.034 0.003 0.003 0.003 0.003 0.003 0.003 0.000

symm 1.991 1.940 2.819 1.259 3.262 3.267 0.058 0.058 0.058 0.058

syr2k 0.922 0.143 0.913 0.119 1.544 1.516 0.190 0.033 0.190 0.033

syrk 0.649 0.101 0.660 0.088 0.676 0.713 0.313 0.022 0.313 0.022

trmm 0.776 0.062 1.798 0.174 2.020 2.015 0.045 0.046 0.045 0.046

2mm 1.137 0.127 1.640 0.195 1.921 2.004 0.348 0.038 0.347 0.038

3mm 2.041 0.215 2.433 0.266 2.883 2.984 0.563 0.062 0.563 0.062

atax 0.031 0.005 0.053 0.006 0.008 0.007 0.007 0.007 0.009 0.002

bicg 0.031 0.005 0.053 0.006 0.007 0.006 0.006 0.007 0.008 0.002

doitgen 0.406 0.228 0.607 0.262 0.513 0.557 - - 0.146 0.016

mvt 0.052 0.006 0.044 0.006 0.008 0.007 0.007 0.005 0.007 0.002

Polly can be attributed to the tile size selection model. Polly uses default tile sizes for all

the loop nests while PolyMage-opt-BLAS empirically chooses an optimal tile size as dis-

cussed in Chapter 4. Secondly, while Polymage-opt-BLAS maps some functions to BLAS

routines, Polly does not perform this optimization. Benchmarks like syr2k and syrk show

performance improvement on Intel machine whereas there is a slight slow down on AMD,

in comparison with Polly. This is caused by using different BLAS libraries on Intel (Intel

MKL) and AMD machines (OpenBLAS).
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Table 5.8: Execution times (in s) with extralarge input dataset for linear algebra bench-

marks from PolyBench suite on AMD Opteron

Benchmark Pluto PPCG PolyMage BLAS PolyMage-opt-BLAS

1 16 1 16 1 16 1 16 1 16

gemm 22.28 1.536 78.71 5.118 94.82 94.66 1.300 1.360 1.315 1.351

gemver 0.215 0.055 0.157 0.047 0.115 0.114 0.110 0.082 0.109 0.082

gesummv 0.105 0.021 0.073 0.012 0.045 0.044 0.042 0.021 0.042 0.021

symm 67.77 84.52 44.10 12.30 63.13 63.56 7.996 4.783 8.032 4.755

syr2k 45.81 5.255 45.31 5.319 104.0 104.0 20.24 2.858 20.27 2.875

syrk 43.45 4.955 43.50 4.962 49.76 49.68 19.47 2.400 19.47 2.401

trmm 11.27 0.874 33.93 2.527 44.93 53.70 3.947 0.629 3.960 0.630

2mm 50.28 4.116 87.06 7.006 100.1 102.3 1.489 1.456 1.511 1.493

3mm 107.7 8.193 139.3 10.72 136.4 136.2 2.346 2.371 2.380 2.444

atax 0.042 0.009 0.025 0.006 0.025 0.026 0.023 0.009 0.023 0.009

bicg 0.042 0.009 0.026 0.006 0.025 0.025 0.023 0.005 0.023 0.009

doitgen 6.391 2.766 12.04 2.556 10.63 10.62 - - 2.832 0.381

mvt 0.213 0.033 0.106 0.026 0.079 0.080 0.074 0.047 0.074 0.047

Comparison with Mehta et al. [22]

Mehta et al.[22] proposes an analytical model for tile size selection which leverages the

associativity available in modern caches. The model chooses tile sizes which benefits vec-

torization and reuse along multiple levels of the cache.

Table 5.9 and Table 5.10 present execution times for this model on Intel Xeon and AMD

Opteron machines respectively. Our approach, Polymage-opt-BLAS provides an average

improvement of 4.39× on Intel Xeon machine and 2.1× on AMD machine for 16-thread

execution. This performance gain can be attributed to the fact that the model proposed in

Mehta et al. generates one set of tile sizes for the entire benchmark, thereby missing on

the performance gain of having different tile sizes for different loop nests.
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Table 5.9: Execution times (in s) with extralarge input dataset for linear algebra bench-

marks from PolyBench suite on Intel Xeon

Benchmark PolyMage-opt-BLAS Polly Mehta et al.

1 16 1 16 1 16

gemm 2.462 0.230 3.016 3.002 2.536 0.404

gemver 0.054 0.026 0.131 0.026 0.090 0.037

gesummv 0.017 0.009 0.049 0.008 0.042 0.013

symm 0.503 0.493 13.57 9.289 24.29 25.65

syr2k 1.618 0.268 8.636 0.811 8.922 1.564

syrk 2.973 0.144 5.265 0.538 6.168 1.107

trmm 0.311 0.266 10.78 7.862 3.544 0.481

2mm 2.741 0.269 2.844 2.942 8.157 1.416

3mm 4.460 0.431 3.971 3.830 15.39 2.480

atax 0.009 0.002 0.018 0.008 0.017 0.008

bicg 0.007 0.002 0.017 0.004 0.018 0.007

doitgen 0.894 0.098 3.494 0.784 1.302 1.616

mvt 0.030 0.020 0.080 0.015 0.144 0.030

5.3.2 DSP Filters Benchmarks

Figure 5.3 provides the execution times for vuvuzela (Figure 5.3a) and unwanted spectral

filters (Figure 5.3b). Both these filters have reduction operations for which PolyMage does

not do any tiling or parallelization. PolyMage is modified to map up-sampling operations in

these filters to optimized FFT routines in the fftw3 library (referred to as PolyMage-FFT).

These filters involve significant number of reductions and hence just optimizing upsam-

pling operations with fftw library does not scale with the increase in number of cores.

PolyMage-opt-FFT has the ability to optimize reduction operations thus providing an im-

provement of 7.68× over PolyMage-FFT. The scipy library from Intel’s python distribution
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Table 5.10: Execution times (in s) with extralarge input dataset for linear algebra bench-

marks from PolyBench suite on AMD Opteron

Benchmark PolyMage-opt-BLAS Polly Mehta et al.

1 16 1 16 1 16

gemm 1.315 1.351 4.622 4.618 16.67 2.931

gemver 0.109 0.082 0.127 0.039 0.175 0.038

gesummv 0.042 0.021 0.024 0.011 0.099 0.016

symm 8.032 4.755 26.98 16.28 36.75 36.86

syr2k 20.27 2.875 15.84 1.406 46.57 7.628

syrk 19.47 2.401 11.41 0.874 44.37 7.166

trmm 3.960 0.630 24.18 26.68 6.663 0.861

2mm 1.511 1.493 5.014 5.015 50.87 7.339

3mm 2.380 2.444 8.170 8.159 108.7 14.24

atax 0.023 0.009 0.021 0.012 0.033 0.009

bicg 0.023 0.009 0.017 0.006 0.034 0.007

doitgen 2.832 0.381 7.325 1.699 5.226 6.345

mvt 0.074 0.047 0.096 0.021 0.188 0.032

provides optimized routines required to build these filters. We observe that, among the im-

plementations of the filters, Intel’s scipy provides best sequential performance. However,

as shown in Figures 5.3a and 5.3b, the implementation of filters using Intel’s scipy does not

scale well with the number of cores. Matlab with parallel computing support, provides an

improvement of 7.2× over PolyMage-FFT. PolyMage-opt-FFT provides an improvement of

5.1× over scipy and 1.8× over Matlab. Overall, our approach PolyMage-opt-FFT provides

better performance than state-of-art along with good thread scalability.
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Figure 5.3: Execution time for DSP benchmarks and scaling across cores

5.3.3 Image Processing benchmarks

To recall, the baseline PolyMage’s tile size selection for image processing applications is

based on a dynamic programming model [19]. Since both PolyMage and PolyMage-opt

perform same optimizations on these benchmarks, the objective here is to compare the

tile size selection routines. In most of the cases PolyMage-opt finds the same tile sizes as

PolyMage. In cases where different tile sizes were found, the difference of tile sizes (per

dimension) were very small (±2). Therefore, for image processing benchmarks (Unsharp

Mask, Harris Corner, Bilateral Grid, Multiscale Interpolate, Camera pipeline and pyramid

blend) PolyMage-opt performs within ±4% of baseline PolyMage performance which is

within experimental bounds. Thus, the proposed tile size selection model (along with

additional optimizations for reduction operations) does not introduce any performance

regression for image processing pipelines.

5.4 Summary

To summarize, our optimizations described in Chapter 4, provides an aggregate perfor-

mance improvement of 8.1× over PolyMage (16 threads) across dataset sizes small and
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extralarge in PolyBench. Similarly, an aggregate speedup of 2.5× over Pluto as the pro-

posed approach finds better tile sizes and also map matrix operations to BLAS library calls.

An overall speedup of 3.8× over PPCG is obtained. For DSP benchmarks, the proposed ap-

proach performs better than Matlab and Intel’s scipy by 89% and 5.12× respectively. The

results also prove that the optimization approach is comprehensive as it accomplishes to get

good performance across all dataset sizes and is able to robustly out perform state-of-the-

art approaches. Further, the chapter also showed that the architecture agnostic approach

of this work provides good performance on any modern X86 system. Lastly, the proposed

tile size selection model is iso-performant with the tile size selection models proposed by

Jangda and Bondhugula [19] on benchmarks from the image processing domain.
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Chapter 6

Related Work

There has been a stream of work in the area of optimizing linear algebra computations.

This section discusses the relevant state-of-art works and how our approach differs from

these and builds on their shortcomings.

6.1 LGen

LGen [21, 35] is a recent domain-specific language that produces performance-optimized

basic linear algebra computations on small matrices of fixed sizes. LGen accepts inputs

in a language called Linear Algebra Language (LL) along with an optional parameter v

(vector length of the ISA). Firstly, the input is parsed into an expression graph and the

compiler chooses a tiling strategy and annotates the computations with tile sizes. Next,

the LL expression is converted into another language called
∑

-LL, that makes access pat-

terns and loops explicit.
∑

-LL is based on
∑

-SPL that is used in Spiral[30, 29]. The

compiler performs tiling, loop merging, loop exchange, loop unrolling, scalar replacement

and conversion to SSA by generating a C-intermediate representation. Finally, a C function

is generated and its performance is used to auto tune. In case vectorized code is required,

a small set of pre-defined codelets is used to generate vector intrinsics.

LGen performs well for small matrix sizes since it performs register tiling and generates
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vector intrinsic code. It is also easy for LGen to port to a new vector machine by implement-

ing only the basic codelets for that machine. However, LGen was designed very specifically

for small matrices and does not scale well for large matrices. The work in this thesis is

not limited to linear algebra computations but can also generate efficient code for other

arbitrary affine accesses.

6.2 High Performance Libraries

OpenBLAS [40] and MKL [23] provide high performance linear algebra computations by

hand-optimizing them for specific hardware. Open source libraries like Eigen [9], in ad-

dition to their optimizations, rely on these hand optimized implementations for high per-

formance. There have also been many attempts to automate these optimizations, which

include LAPACK [1], PHiPAC [3] and ATLAS [41]. They iteratively tune for performance by

varying, block sizes, loop orders and also use runtime feedback mechanism for autotuning.

All these libraries provide excellent performance for large problem sizes but their per-

formance can be sub-optimal for small matrices as shown by the results in the work of Hall

et. al [32]. Some linear algebra computations may not match with any of the BLAS in-

terfaces, and hence, Intel released the Integrated Performance Primitives (IPP) [17] which

includes optimizations for small size matrices. Similar OpenBLAS or MKL, these libraries

also miss out on the opportunity of optimizing across sub-routine calls to improve input

data reuse. The work in this thesis targets to exploit this observation to obtain improved

performance.

6.3 FLAME

FLAME [12] is a DSL to formally express complex linear algebra applications (Eg: LU,

Cholesky decomposition). The language is based on the assumption that most complex

linear algebra computations can be performed using algorithms that view matrices as a

collection of sub-matrices (or blocks). The operations on these blocks can be mapped to
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BLAS libraries. The Flame compiler selects the data layout for these blocks and relies

on BLAS libraries like Intel MKL or OpenBLAS for high performance. Libflame [44, 5]

overcomes the limitations of FLAME for small matrices by providing a runtime that supports

task parallelism. Dependences between blocks are computed at runtime and the blocks that

are ready to be executed are assigned to threads in a two dimensional block-cyclic manner.

A thread then performs all tasks that write to a particular block. Basic operations on these

blocks are mapped to BLAS libraries which are executed serially.

All these libraries [12, 44, 5] require the programmer to specify the decomposition.

Secondly, these libraries rely on auto-tuning to determine the block sizes i.e. sizes of the

sub-matrices. Incorporating these matrix decompositions in PolyMage is deferred to fu-

ture work. In the case of matrix decompositions, like LU decomposition, addressing load

balancing issues is extremely essential to obtain high performance. This requires compiler

assisted runtime techniques like [8], to be incorporated in PolyMage which is also deferred

to future work.

6.4 Build to Order BLAS (BTO)

Build to Order BLAS (BTO) [34] is a domain-specific compiler which optimizes for loop fu-

sion, data partitioning, and parallelism. The compiler is divided into four phases - Analysis,

Refinement, Optimization ,and Code generation. During the analysis phase, the compiler

generates a data-flow graph based on the operation and data type specified in the computa-

tion. The type of storage and implementation for each node in the graph is decided at this

stage of the compiler. BTO stores information on how to implement basic linear algebra

computation in a separate database called the linear algebra database. The compiler then

chooses a matching implementation for a node from this database and adds this informa-

tion to the dataflow graph. The refinement phase of the compiler further breaks down the

nodes into sub-graphs, based on the implementation chosen in the Analysis phase. Next,

the Optimization phase performs merging of the sub-graphs when they have a common

operand but do not depend on one another or if the iteration strategies of the two graphs
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are compatible. These optimizations improve the cache locality of the computation. BTO

generates C code after performing these optimizations. It is up to the general purpose

compilers to perform vectorization for the code. Currently, BTO supports sparse and dense

computation for both single and double precision matrices. The matrices can be stored in

row-major or column-major format. BTO also supports for both floating point operations

and complex numbers.

BTO also tries to perform optimizations across different operations but they do not

map to library calls for large matrices. Hence, losing the performance provided by these

optimized libraries. The work in this thesis not only takes advantage of the optimized

linear algebra libraries but also is able to able to map to these libraries calls automatically

(if profitable) using Idiom recognition.

6.5 Diesel

Diesel [10] is a domain specific language for Linear Algebra and Neural Net computations

on GPUs. This DSL accepts the input in an intuitive form and generates high performant

CUDA code to be run on a GPU. They extract the polyhedral representation of the input and

develop an initial schedule using ISL [38]. This schedule is then used to tile the program.

The first set of parallel-tile loops are distributed among thread blocks and the subsequent

set of parallel tile loops are distributed among warps and lanes. The DSL also performs

memory optimizations to overlap memory and compute optimizations, thus hiding the

data-transfer latency.

Diesel performs many GPU specific optimizations which may not be applicable in the

case of multi-core CPU architectures, which is the primary target of this thesis. The tiling

strategy also uses default tile sizes which are then tuned to obtain the best performing

code. The work in this thesis eschews tile size tuning and employs a heuristic to decide

best tile sizes. Secondly, Diesel always generates polyhedral schedules and does not map to

any optimized library calls when there is no reuse across functions, thereby losing out on

some performance benefits. The thesis proposes optimizations to map to optimized linear
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algebra libraries and target to exploit cache locality when there is reuse across functions.

6.6 Tensor Comprehensions

Tensor Comprehensions [36] is another recent domain specific language for optimizing

matrix operations on GPUs, specifically for Deep Neural Network domains. The frame-

work uses a just-in-time polyhedral compiler to perform optimizations like loop fusion and

tiling. It uses compilation caches to determine tile sizes and loop fusion scheduling strat-

egy. Compilation caches store the best performant code for all combinations of input size,

optimization options, and architectures. The best performing code is obtained by an auto-

tuner which uses a genetic algorithm. The auto-tuner runs for a given period of time and

updates the cache with better versions of the CUDA program.

Tensor Comprehension also relies on an auto tuning based mechanism to find the best

performing code and hence the best performing tile size. However, the tile size selection

model proposed in this Section 4.3 can be used to empirically determine the tile size for a

given architecture.

6.7 Polyhedral Source-to-source tools

Another approach to obtaining fast linear algebra code is to use polyhedral source-to-source

tools like Pluto [4], PPCG [39] and ISL scheduler [45]. These compilers perform automatic

parallelization and locality optimization for affine loop nests. They perform tiling, vector-

ization and various loop optimizations automatically for regular programs with imperfectly

nested loops. However, the scope of these compilers is broader and a domain-specific lin-

ear algebra compiler allows for more specific optimizations as well as improves productiv-

ity. Section 5.3 compared the experimental results against optimized code from Pluto and

PPCG and the approach proposed in this thesis is able to obtain better performance than

them.
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6.8 Detection of Linear Algebra Operations in Polyhedral

Programs

Another relevant work is the work of Iooss et.al. [16]. They recognize dense linear alge-

bra computation by partitioning the computations into blocks. They use a method called

“mono-parametric tiling" to create sub-blocks, and use a template recognition algorithm,

similar to Barthou et al. [2] to find if the program fits a pattern.

This work uses C-code as input and uses a template recognition algorithm to find linear

algebra computations and replace them with BLAS calls. The work presented in this thesis

focuses on mapping to BLAS library calls only when profitable. In addition, to the improved

productivity of expressing computations in the PolyMage DSL, the idiom recognition phase

is simpler as the specification comes from the DSL.

6.9 Tile Size Selection Models

The closest approach to ours on tile size selection models was recently proposed by Jangda

and Bondhugula [19]. The limitations of extending their approach to basic matrix com-

putations were discussed in Section 3.2. The works on tile size selection models can be

broadly classified as works which use an analytical model [22, 20, 6, 11, 31] to select tile

sizes and ones which perform an extensive search to determine either good tile sizes or tile

size models [43, 33].

Mehta et al.[22] proposes an analytical model for tile size selection which leverages

the associativity available in modern caches. The model chooses tile sizes which benefits

vectorization and reuse along multiple levels of the cache. However, the tile size selection

is performed only after the final fused schedule is provided by the Pluto[26] compiler

whereas, in our approach, fusion and tiling are tightly coupled. Also, the model generates

one set of tile sizes for the entire program, thereby missing on the performance gain of

having different tile sizes for different loop nests inside with an input program. Section 5.3

compared the experimental results against this model.
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The other analytical models proposed are less powerful because of the following draw-

backs:

• they assume a direct mapped cache while predicting the tile sizes, whereas modern

architectures have moved towards associative caches [6],

• their model does not consider some important parameters like dataset sizes and

reuse [11] and

• they do not account for modern architectural changes like prefetching and vectoriza-

tion as a part of the model [20, 31]

These models also assume that the fusion of the computation is already available before

the tile size calculation. These models do not ensure that the threads have enough work

to do and the number of threads is at least equal to the number of cores available.

Yuki et al.[43] proposes a model which generates tile size selection models using pro-

gram features, synthetic programs, and machine learning techniques. They use neural

networks to predict a tile size selection model. They also generate synthetic programs to

feed as input to this neural network. They show performance benefits on different archi-

tectures and compiler. The proposed tile size selection model is for one level of tiling which

when extended to many dimensions increases the search space, and the scalability of this

approach is yet to be investigated. They also assume that loop fusion has already been

performed.

Shirako et al. [33], identifies bounds on the search space of tile sizes. They rely on

an auto-tuning approach for finding the best tile size within these bounds. However, the

search space although smaller than many other cases is still significantly large and hence

the process of finding best tile sizes is time-consuming. Again, they tune for tile size for

the entire computation and hence cannot predict different tile sizes for two different loop

nests in a program.
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Chapter 7

Conclusions and Future Work

This chapter summarizes the thesis and discusses potential avenues for future work.

7.1 Conclusions

Linear algebra computations and arbitrary affine accesses are prevalent in many domains

including scientific computing, digital signal processing, and deep learning. These com-

putation primitives have been proposed to be optimized in several prior works. The work

in this thesis examined these approaches and is motivated by several limitations posed by

them. Though there exist several high performance libraries tuned for a specific architec-

ture, they are hard to program due to large parameter lists and do not perform well on

all dataset sizes. While polyhedral source-to-source tools are unduly generic, certain DSLs

overcome this but they place restrictions on what can be specified. This thesis identified

specific limitations of these approaches and proposes novel solutions to overcome these

drawbacks. Several aspects such as extracting parallelism, vector hardware performance,

exploiting locality in caches and using existing high performance library implementations

where applicable was looked at comprehensively to study limitations of state-of-the-art

works. The thesis proposed to improve programmer productivity for expressing the com-

putation primitives by using the DSL approach. The optimizations are thus chosen to be

implemented in the compiler of the PolyMage DSL.

65



66 7. Conclusions and Future Work

The DSL approach required enhancing the PolyMage’s specification by adding new con-

structs for matrices and supporting basic matrix operations like addition, multiplication and

transposes. Along with this newly added language specification, PolyMage’s fusion and tiling

strategy was enhanced to support reduction operations. The new tile size selection model

which works for all affine accesses was implemented in PolyMage. This technique provided

significant performance gains for application in digital signal processing domain. Auto-

matic idiom recognition to map basic matrix operations to optimized library calls whenever

profitable was added in PolyMage. An intra-tile optimization technique to improve auto-

vectorization was added. Finally, for improving the performance of reduction operations

the dynamic programming based model was extended to fusion and tiling for reduction

operations as well.

The thesis experimentally evaluates the proposed approach with representative bench-

marks from linear algebra, digital signal processing, and image processing. Experiments

are carried out on the latest multi-core x86 hardware from Intel and AMD and evaluated

over a range of dataset sizes to demonstrate the robustness of the proposed approach. The

code generated by the proposed approach performs better than state-of-the-art, showing a

mean performance improvement of 3.6× over Pluto, 4.1× over PPCG and 21.7× over the

existing PolyMage compiler for linear algebra benchmarks from PolyBench suite. In the

case of digital signal processing benchmarks, a mean speedup of 5.1× over Intel’s Scipy

and 1.9× over MATLAB for the two filters unwanted spectral and vuvuzela was observed.

The proposed approach performed 7.7× better as compared to mapping some of the oper-

ations with FFTW calls. Thus, the proposed approach shows scalable speedups for various

problem sizes in several domains.

7.2 Future Directions

Some of the enhancements to the proposed model are listed in this section.

• This work introduced support for mapping to a function call for two dimensional

basic matrix operations. Extending this approach to map matrix operations on higher
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dimensional matrices (tensors) to optimized library routines can be explored in the

future. An example of this would include the doitgen benchmark in PolyBench.

• Extension of the tile size selection model to support multilevel tiling. This would

require some minor modifications to the algorithm proposed in this work.

• Extending language specification and optimizations to add support for Recurrent

Neural Networks.

• Extension of PolyMage code generation for multi-node support using MPI.

• The current tile size selection model is evaluated and tested for CPU applications.

In the future, extensions to support tile size selection model for GPUs and other

accelerators can be added.
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