
Optimizing Linear Fascicle Evaluation Algorithm for
Multi-core and Many-core Systems

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Technology (Research)

IN THE COMPUTER SCIENCE AND ENGINEERING

by

Karan Aggarwal

Department of Computer Science and Automation

Indian Institute of Science

BENGALURU – 560 012

FEBRUARY 2020

ii

© Karan Aggarwal

June 2019

All rights reserved

Acknowledgements

It is my extreme pleasure to have had this opportunity to be a research student at the Indian

Institute of Science.

Firstly, I would like to extend my gratitude to my advisor Dr. Uday Kumar Reddy B.,

for his invaluable guidance and support throughout my Masters degree. He has been very

supportive and gave ample freedom to pursue whichever direction I chose. This has benefited

me in enormously. I was able to explore fascinating areas which molded my research interests.

He has always helped me improve my research and engineering aptitude and help me step in

the right direction during times of falter.

My collaborations with Dr. Sridharan Devarajan and Varsha Sreenivasan from the Center

for Neuroscience, IISc gave me plenty of insights into several topics of computational neuro-

science.

I specially thank the members of the Multi-core Computing Lab - Aravind Acharya, Ku-

mudha, Arvind M., Anup, Kingshuk, Abhinav and Shubham for discussion on various topics. I

would like to thank them for their patience and support. Special thanks to Aravind Acharya for

being always enthusiastically available for a technical discussion and his help towards reviews

and suggestions.

I am extremely grateful to Ms Pallavi Bhardwaj for her mentorship and self-less support.

My special thanks to Dr. Subinoy Das, Dr. Banani Chakroborty, Dr. Arnab Roy, Dr. Na-

mita Kumari, Ankur Raina, Vaibhav Tripathi and Khushboo Kumari. My thanks also go out to

my wonderful friends at IISc - Akshita, Abhijeet, Aditi, Priyanshi, Ramdev and several others

who are not mentioned here.

I would like to thank all the staff in the department, including Mrs. Padmavathi, Mrs.

Nishitha, Mrs Kushal and Mrs. Meenakshi, for ensuring that my time at the department was

hassle free.

I also thank my family and friends for always being patient and supportive in balancing my

personal and academic life. I specially thank my parents for their guidance.

Finally, I would like to thank the almighty Master for giving me the opportunity, energy

and the honour of working at IISc.

Publications based on this Thesis

1. Karan Aggarwal, Uday Bondhugula. Optimizing Linear Fascicle Evaluation for Many-

core System, ACM International Conference on Supercomputing (ICS), Arizona, USA,

pages 425–437, June 2019 (to appear).

2. Karan Aggarwal, Uday Bondhugula. Optimizing Linear Fascicle Evaluation for Multi-

core and Many-core Systems, ACM Transactions on Architecture and Code Optimiza-

tion (TACO) (to be submitted). Technical report: arXiv:1905.06234 [cs.DC].

Abstract

Sparse matrix-vector multiplication (SpMV) operations are commonly used in various scien-

tific and engineering applications. The performance of the SpMV operation often depends

on exploiting regularity patterns in the matrix. Various representations and optimization tech-

niques have been proposed to minimize the memory bandwidth bottleneck arising from the

irregular memory access pattern involved. Among recent representation techniques, tensor

decomposition is a popular one used for very large but sparse matrices. Post sparse-tensor

decomposition, the new representation involves indirect accesses, making it challenging to op-

timize for multi-cores and even more demanding for the massively parallel architectures, such

as on GPUs.

Computational neuroscience algorithms often involve sparse datasets while still perform-

ing long-running computations on them. The Linear Fascicle Evaluation (LiFE) application

is a popular neuroscience algorithm used for pruning brain connectivity graphs. The datasets

employed herein involve the Sparse Tucker Decomposition (STD) — a widely used tensor

decomposition method. Using this decomposition leads to multiple irregular array references,

making it very difficult to optimize for both multi-core and many-core systems. Recent im-

plementations of the LiFE algorithm show that its SpMV operations are the key bottleneck

for performance and scaling. In this work, we first propose target-independent optimizations

to optimize these SpMV operations, followed by target-dependent optimizations for CPU and

GPU systems. The target-independent techniques include: (1) standard compiler optimizations

to prevent unnecessary and redundant computations, (2) data restructuring techniques to mini-

mize the effects of irregular accesses, and (3) methods to partition computations among threads

to obtain coarse-grained parallelism with low synchronization overhead. Then we present the

target-dependent optimizations for CPUs such as: (1) efficient synchronization-free thread

mapping, and (2) utilizing BLAS calls to exploit hardware-specific speed. Following that,

we present various GPU-specific optimizations to optimally map threads at the granularity of

warps, thread blocks and grid. Furthermore, to automate the CPU-based optimizations devel-

oped for this algorithm, we also extend the PolyMage domain-specific language, embedded

in Python. Our highly optimized and parallelized CPU implementation obtain a reduction in

execution time from 225 min to 8.2 min over the original naive sequential CPU implemen-

tation running on 16-core Intel Xeon Silver (Skylake-based) system. In addition to that our

optimized GPU implementation achieves a speedup of 5.2× over a reference optimized GPU

code version on NVIDIA’s GeForce RTX 2080 Ti GPU, and a speedup of 9.7× over our highly

optimized and parallelized CPU implementation.

Keywords

SpMV, Indirect array accesses, Parallelism, Locality, Data Restructuring, Connectome, Trac-

tography, Fascicle, dMRI, LiFE Algorithm, Tensor decomposition, Sparse Tucker Decompo-

sition, Non-negative least square, SBBNNLS, Multi-core, GPU, PolyMage

Contents

Acknowledgements

Publications based on this Thesis

Abstract

Keywords

1 Introduction 1

2 Background 7
2.1 Terminology . 7
2.2 The LiFE Algorithm . 9
2.3 Data Conversion Steps . 12
2.4 Matrix Computations using Sparse Tensor Decomposition 14

3 Problem and Challenges 19
3.1 Large Dataset . 19
3.2 Architecture-specific Challenges . 20

3.2.1 Multi-core architecture . 20
3.2.2 GPU architecture . 20

3.3 Indirect Array Accesses . 21

4 Optimizations 23
4.1 Target-independent Optimizations . 23

4.1.1 Basic Compiler Optimizations . 24
4.1.2 Data Restructuring . 25
4.1.3 Computation Partitioning . 27

4.2 Target-specific Optimizations . 29
4.2.1 CPU-specific Optimizations . 29
4.2.2 GPU-specific Optimizations . 34

5 Domain-Specific Language Extensions 41
5.1 PolyMage DSL . 41
5.2 PolyMage Compiler flow and Optimizations 42

CONTENTS

5.3 New PolyMage Constructs . 43

6 Experimental Evaluation 45
6.1 Experimental Setup . 45
6.2 Datasets . 47
6.3 Results and Analysis on Multi-core System 47

6.3.1 Code Versions . 48
6.3.2 Analysis . 48

6.4 Results and Analysis on GPU . 56
6.4.1 Code Versions . 56
6.4.2 Analysis . 57

6.5 Performance Analysis based on various parameters of LiFE 65
6.6 Execution Time Comparison of different Code Implementations 66
6.7 Error Quantification and Overhead Comparison of different Implementations 68

7 Related Work 69
7.1 Optimizing SpMV operations of the LiFE algorithm 69
7.2 Optimizing Irregular Applications using Inspector/Executor Paradigm 72
7.3 Optimizing SpMV operations for CPUs and GPUs 73
7.4 Optimizing tensor operations for CPUs and GPUs 75

8 Conclusions and Future Work 77
8.1 Summary . 77
8.2 Future Work . 78

References 81

List of Tables

6.1 Architecture details of CPU and GPU systems used for our experimental eval-

uation. 46

6.2 Execution time for CPU-naive implementation of the SpMV operations for

various data restructuring choices on Intel Xeon processor. 49

6.3 Execution time of parallelized CPU-naive implementation of SpMV for dif-

ferent computation partitioning + data restructuring combinations. 50

6.4 Execution time of CPU-opt implementation of SpMV for different computa-

tion partitioning + data restructuring combinations 50

6.5 Execution time of SBBNNLS with different number of cores 55

6.6 Execution time of Ref-opt implementation of the SpMV operations for various

data restructuring choices. 58

6.7 Execution time of Ref-opt implementation of the SpMV operations for differ-

ent computation partitioning + data restructuring combinations. 58

6.8 Execution time of the GPU-opt implementation of the SpMV operations for

different computation partitioning + data restructuring combinations. 59

6.9 Execution time of SBBNNLS for various tractography algorithms 64

6.10 Execution time comparison for various code implementations 66

6.11 Error quantification and overhead comparison 68

LIST OF TABLES

List of Figures

2.1 Images of dMRI, white matter, connectome, fascicles and voxels 8

2.2 SpMV operation in the LiFE algorithm . 10

2.3 dMRI data conversion steps . 14

2.4 Diagram showing connectome matrix, tensor and decomposed matrix 15

2.5 Block diagram of SpMV operations used in the LiFE algorithm 17

2.6 Original sequential CPU code version of the SpMV operations 18

4.1 Sub-vectors of a vector . 23

4.2 Code parallelization for various data restructuring techniques 31

4.3 Reference GPU code for the SpMV operations of LiFE 35

4.4 Various GPU optimizations . 38

5.1 PolyMage compiler flow . 42

5.2 New PolyMage DSL constructs added for sparse representation of matrix . . 44

6.1 Execution time of SpMV with various optimizations on CPU. 52

6.2 Performance metrics for CPU . 53

6.3 Execution time of SpMV with various optimizations on GPU. 61

6.4 Performance metrics for GPU . 62

LIST OF FIGURES

List of Algorithms

1 SBBNNLS algorithm used in the LiFE algorithm 13

LIST OF ALGORITHMS

Chapter 1

Introduction

Sparse matrix-vector multiplication (SpMV) is a key operation in many scientific and engi-

neering applications. As SpMV is typically memory bandwidth and latency bound, it plays a

significant role in determining the overall execution time as well as the scalability of an ap-

plication. Utilizing the architecture-specific memory model to reduce its memory bandwidth

requirement is a major challenge, especially for highly parallel architectures such as GPUs,

where exploiting the regularity in unstructured accesses is key. Numerous prior works have

been proposed to improve the performance of SpMV, including that of the development of

new sparse representations [72, 17, 112], representation-specific optimizations [17, 16, 45]

and architecture-specific techniques [13, 17, 67, 76, 126, 128, 130, 103].

Tensor decomposition [56] is a popular technique to represent the LHS matrix in SpMV as

a combination of a tensor and other auxiliary data structures in a way that drastically reduces

the amount of storage. Tensor decomposition has found use to perform SpMV operations

efficiently across many domains such as digital signal processing [29, 104, 59, 60, 61], machine

learning [104], data mining [89, 110, 111, 8, 9], computational biology [65, 23, 83, 81, 82, 6,

7, 123, 74, 79, 15] and several more mentioned by Kolda and Bader [56]. Tucker et al. [117]

presented a widely used tensor decomposition technique based on high-order singular value

decomposition. Tucker’s technique is used in a range of applications [133, 132, 92, 56]. More

importantly, the Tucker model is used to perform low-rank decomposition of tensors to depict

the sparse representations of matrices, and this is commonly referred to as the Sparse Tucker

1

2 1. Introduction

Decomposition (STD) [117]. The major challenge for an STD-based application however is

that the sparse representation entails multiple indirect array accesses. Therefore, efficiently

utilizing multi-core and many-core architectures poses a significant difficulty because such

accesses are both memory latency and bandwidth unfriendly. However, employing STD for

an SpMV operation is a necessary trade-off considering the reduction in memory utilization

obtained for a sparse matrix.

Building brain connectivity graphs or the wiring diagram of neural circuitry of the brain,

termed as connectome, is an exciting computational neuroscience conundrum involving large

but sparse matrices. Understanding the neural pathways is key to studying the connection

between brain-regions and behavior. Principally, a connectome can be described at various

scales based on the spatial resolution [107, 127, 77]. The scales can be primarily categorized as

microscale, mesoscale and macroscale [53]. A microscale connectome is a neuron-to-neuron

brain graph involving 1011 nodes (neurons) and 1017 edges (neuronal connection); currently,

obtaining and processing such large data appears infeasible. A mesoscale connectome building

technique is based on anatomical properties of the brain, which again is not a viable choice due

to poor resolution of electron-microscopy [50, 20]. Once technology is enhanced, optimizing

such large sparse datasets will still be a formidable problem. In contrast, a macroscale level

connectome [32] divides a brain model into 3D volumes called voxels (in the order of 106 in

number); this is thus a much more tractable approach.

Diffusion-weighted Magnetic Resonance Imaging (dMRI) is a popular macroscale choice,

that captures the diffusion of water molecules in the brain. The dMRI along with tractography

techniques can be used to estimate white matter connectivity in the human brain. These path-

ways represent physical connections between brain regions and when analyzed in conjunction

with behaviour, can provide interesting insights into brain-behaviour relationships. These in-

sights are often essential in diagnosing diseases of the brain such as Alzheimer’s Disease [84],

a neurodegenerative disorder involving degradation of white matter. While the non-invasive

nature of dMRI enables studying structural connectivity in-vivo in humans, it suffers from a

major limitation in that the validity of the results cannot be tested easily due to the lack of

access to ground truth [47, 73]. Data acquisition protocols and tractography approaches often

3

depend on the specific scientific questions being addressed and can differ significantly across

cohorts. Thus, a standardized evaluation technique to assess connectomes and establish evi-

dence for white matter pathways is critical for accurate and reliable estimation of structural

connectivity in the brain.

One such technique that addresses these shortcomings is the Linear Fascicle Evaluation

(LiFE) [95, 22, 23], an algorithm that prunes white matter connectomes to produce an opti-

mized subset of fibers that best explain the underlying diffusion signal. LiFE posits that the

diffusion signal in a voxel (a volume of brain tissue) can be approximated by a weighted sum

of the individual contribution of every streamline traversing that voxel. The model thus entails

a simple constrained optimization problem where the weights associated with every streamline

are estimated by minimizing the error between the measured and predicted diffusion signal.

This optimization is carried out using a variant of the gradient descent method - the Subspace

Barzilai-Borwein non-negative least squares (SBBNNLS) algorithm [54], and involves itera-

tive matrix multiplications. However, large execution times and memory requirements have

precluded the large-scale use of the LiFE algorithm. While the memory issues have recently

been addressed with the use of sparse representations (Sparse Tucker Decomposition [117]) of

the data, the matrix-vector multiplications, transformed to a more complex sequence of oper-

ations as presented by Pestilli and Caiafa [22] are still computationally demanding, involving

multiple indirect array accesses. Optimizing the transformed SpMV operations on both multi-

cores and GPUs is a challenging task that is memory latency and bandwidth bound even for

low-resolution dMRI datasets.

In literature, several prior works have been proposed to tackle irregular applications for

both multi-core and GPU systems such as [11, 68, 108, 121, 119, 120]. These approaches use

inspector/executor paradigm [11] to exploit regularity in unstructured accesses. One such ap-

proach is presented by Venkat et al. [121] to automate the code generation for a particular class

of application performing SpMV on GPUs. Other studies show various compiler transforma-

tions to reduce the runtime overhead of code generation by the inspector step in [119], and gen-

erate optimized code for wavefront parallelization for sparse-matrix representation in [120].

4 1. Introduction

These works have presented a semi-automatic approach to analyze the data (using the inspec-

tor step) and then generate the optimized code (using the executor step). Note that these works

are limited to read non-affine accesses. However, our work targets optimization of the SpMV

operations of LiFE, where the sparse matrix is decomposed using the STD technique. The new

representation of the matrix involves multiple irregular accesses which includes both read as

well as write non-affine array accesses. Therefore, due to presence of such type of accesses,

the exiting works will have a high runtime overhead because of additional time required for

inspector and executor step, and this time dratically increases when the number of non-affine

accesses is more. However, in this work, we present a specific data restructuring method tuned

for LiFE with low run-time overhead. Furthermore, the prior works amortizes the overhead

due to inspector/executor across the iterations of a loop in a program. In contrast, our work

amortizes the overhead due to restructuring across the several runs of the same program along

with the iterations of a loop. Additionally, our data restructuring optimization could potentially

be generalized and extended to other applications employing STD, although one would have

to look for similar or other data patterns. Thus, our work proposes a tailored data restructuring

method to tackles indirect access of SpMV operations used in LiFE.

Prior works on optimizing the LiFE application considered distributed systems and GPUs.

Gugnani et al. [44] proposed a distributed memory based approach using MPI and OpenMP

paradigms to parallelize the SpMV operations of LiFE and obtained a speedup of 8.7× over

the original approach. On the other hand, Madhav [70] developed a fast GPU implementation

to optimize the SpMV operations of LiFE by incorporating simple optimization techniques.

In another work, Kumar et al. [57] proposed a GPU-accelerated implementation for ReAl-

LiFE [57], a modification of LiFE application that introduced regularized pruning constraint

to build connectomes.

In this work, we optimize the SpMV operations by performing a number of target-independent

and target-dependent optimizations. The target optimizations comprises: (1) standard compiler

5

optimizations, (2) various data restructuring methods, and (3) techniques to partition compu-

tations among threads. These optimizations can be automated and extended to other applica-

tions performing SpMV operations where the matrix is decomposed using STD. The target-

dependent optimizations that we propose for multi-core architectures are following: (1) effi-

cient synchronization-free thread mapping, and (2) utilizing BLAS calls, and for the GPUs the

optimizations includes optimal techniques to map threads at the granularity of warps, thread

blocks and grids. Tailoring these optimizations for the LiFE application, we obtain a speedup

of 27.12× for our highly optimized and parallelized CPU code over the original sequential im-

plementation, and speedups of 5.2× and 1.87× for our optimized GPU implementation over

a reference optimized GPU implementation (developed by Madhav [70]) and over the ReAl-

LiFE GPU implementation (tweaked to perform same computations as the LiFE application)

respectively. In addition, our work can express the SpMV operation of LiFE in a high-level

language and abstract out other information using a domain-specific language (DSL) approach.

Using the domain information, we can perform optimizations that provide significant improve-

ments in performance and productivity. As a proof-of-concept, we extend PolyMage [85], a

DSL designed for image processing pipelines, to express the key matrix operations in LiFE

and automatically generate optimized CPU code to obtain similar performance improvements

compared to that of our hand-optimized CPU implementation.

The key contributions of this thesis are as follows:

• We address challenges involved in optimizing SpMV operations of the LiFE application

on multi-cores and GPUs by proposing various architecture-agnostic and architecture-

dependent optimizations.

• The target independent optimizations includes: (1) standard compiler optimizations to

avoid unnecessary and redundant computations, (2) data restructuring methods to deal

with multiple indirect array references that in turn make further optimizations valid and

fruitful, and (3) effective partitioning of computations among threads to exploit coarse-

grained parallelism while avoiding the usage of an atomic operation.

• The CPU-specific optimizations comprises: (1) efficient synchronization-free thread

6 1. Introduction

mapping method to reduce load imbalance, and (2) mapping to BLAS calls to exploit

fine-grained parallelism.

• The GPU-specific optimizations include: (1) leveraging fine-grained parallelism by uti-

lizing a GPU’s resources such as shared memory and the shuffle instruction, and (2) ef-

fectively transforming loops to map iterations in a better way.

• Then we present new constructs added to the PolyMage DSL to represent a sparse matrix

and automatically generate optimized CPU code for the SpMV operations of the LiFE

application.

• We present experimental results and analysis to show the usefulness of the optimizations

we incorporated for SpMV of LiFE, and also compare them with the existing implemen-

tations.

• We present experimental results and analysis by varying various LiFE application pa-

rameters such as the number of voxels, number of fibers and different tractography tech-

niques used to process the dMRI data for generating a connectome in the LiFE.

The rest of this thesis is organized as follows. We provide background on the LiFE appli-

cation in Chapter 2. We describe the problem and challenges pertaining to optimizing SpMV

computations of LiFE in Chapter 3. The target-dependent and the target-independent optimiza-

tions are described in Chapter 4. Then we present the constructs developed in the PolyMage

DSL to generate an optimized parallelized CPU code for the SpMV operations in Chapter 5.

Chapter 6 presents details and analysis of experiments we performed by varying various pa-

rameters of LiFE, the benefits of each optimization in an incremental manner, and a compari-

son of various implementations of the SpMV. Related work is discussed in Chapter 7, followed

by conclusions and future works in Chapter 8.

Chapter 2

Background

In this chapter, we start with introducing a few neuroscience terminologies relevant for our

work, then we present the LiFE algorithm, and describe its necessary steps and computations.

We also highlight the underlying challenges in the next chapter.

2.1 Terminology

In this section, we discuss a few terminologies related to neuroscience, which are used through-

out the thesis.

dMRI: Diffusion-weighted magnetic resonance imaging (dMRI) uses diffusion of water molecules

to generate MR images (Figure 2.1a). It is a non-invasive and in-vivo technique used to deter-

mine structural connectivity in the brain.

Voxel: Three-dimensional spatial location in the brain (Figure 2.1c). Typically, the size of a

voxel is 2 mm3 for low-resolution datasets, but with the advent of new technologies the size

of voxel can be as low as 0.1 mm3.

White matter: White matter (Figure 2.1b) refers to areas of Central Nervous System made

up of bundles of axons helping in communication and coordination between different brain

regions. In contrast to gray matter, white matter contains less neuronal cell bodies and more

bundles of axons.

Fibers: Long and thin white matter myelinated axons.

7

8 2. Background

(a) Source: STN96 dataset [93] viewed using MRtrix library [115].

(b) Source: [1] used under the CC BY 1.0 li-
cense [2].

(c) Source: Copyright by Tucania 2012 [116]
used under the CC BY 3.0 license [3].

(d) Source: Copyright 2017 by Ca-
iafa et al. 2017 [22] used under the
CC BY 4.0 license [4].

(e) Source: Copyright 2017 by Ca-
iafa et al. 2017 [22] used under the
CC BY 4.0 license [4].

(f) Source: Copyright 2017 by Ca-
iafa et al. 2017 [22] used under the
CC BY 4.0 license [4].

Figure 2.1: (a) Diffusion-weighted magnetic resonance images (dMRI), (b) White matter areas
are light ivory color and Gray-matter areas are dark ivory color, (c) 2-D view of a voxel where
different colors represent strength of diffusion signal and orientation of the fiber, (d) Fascicles
or bundle of fibers (fi) passing through a voxel, (e) Tracts is the traversal of bundle of fibers
(fi) in the voxels (vj) of the brain, and (f) Connectome: a wiring diagram of the brain with
major tracts represented using different colors.

2.2. The LiFE Algorithm 9

Fascicle: Fascicle (Figure 2.1d) refers to nerve fibers. Nerve fascicle is bundle of axons.

Tracts: Trajectory of fascicles traveling through the white matter (Figure 2.1e).

Connectome: Connectome (Figure 2.1f) is a wiring diagram of white matter pathways of fas-

cicles in the brain. As discussed earlier in previous chapter, the connectomes can be classified

based on various scales such as micro, meso and macro. In our work, wherever we use the

term connectome it refer to a macroscale connectome.

Structural Connectivity Matrix: Adjacency weight matrix of white matter connectivity in

the brain, where the weight of the matrix is the diffusion signal data.

Tractography: Tractography is a technique used to process the dMRI images to detect fiber

tracts. It takes dMRI images as input and produces structural connectivity (SC) matrix as out-

put. There are several such algorithms using various methodology and parameters to produce

different SC matrices or connectomes.

2.2 The LiFE Algorithm

Given a whole brain connectome obtained from diffusion data, the goal of LiFE algorithm

is to retain only those fibers that best predict the underlying diffusion signal. Let the total

number of voxels in which the signal is measured be Nv. In each voxel, the signal is ob-

tained along multiple non-collinear gradient directions (Nθ), and is represented by a vector

y ∈ RNθNv . Further, the contribution of each fiber f traversing voxel v is encoded in an array

M ∈ RNθNv×Nf , where Nf is the total number of fibers in the connectome. In each voxel,

v, LiFE models the diffusion signal measured along each gradient direction θ as the weighted

sum of the contributions of every fiber traversing v. In other words, a candidate connectome

is pruned to obtain optimized connectome that best estimate the underlying diffusion signal.

Thus, the signal across all voxels and all gradient directions can be summarized as:

y ≈Mw, (1)

where y ∈ RNθNv is a vector containing demeaned diffusion signal for all voxels (v) across

all the gradient directions (θ). Matrix M ∈ RNθNv×Nf , contains diffusion signal contribution

10 2. Background

Figure 2.2: SpMV operation in the LiFE algorithm. Source: Copyright 2017 by Ca-
iafa et al. 2017 [22] used under the CC BY 4.0 license [4].

by each fascicle (f) at a voxel (v) in all diffusion directions (θ), and the w ∈ RNf vector

contains the weight coefficients for each streamline fascicle (Figure 2.2). Equation 1 is used

to estimate the weights by minimizing the error, is solved using following non-negative least-

squared optimization problem:

min
w

(1
2
‖(y −Mw)‖2) such that wf > 0,∀f. (2)

The major challenge in solving Equation 2 is the significantly high memory requirements of

the matrix M. Even for small datasets, M can consume about 40GB. In another work, the

authors of LiFE proposed the ENCODE framework [94], wherein Sparse Tucker Decomposi-

tion (STD) [117], a sparse multiway decomposition method to encode brain connectome, was

used to reduce the memory consumption by approximately 40×. Using the STD technique,

the diffusion signal contribution for a voxel (v), Mv ∈ RNθ×Nf is represented as:

Mv = S0(v)DΦv, (3)

2.2. The LiFE Algorithm 11

where S0(v) is the diffusion signal measured in absence of gradient, D ∈ RNθ×Na is a dictio-

nary matrix for canonical diffusion atoms estimating individual streamline fiber based on their

orientation and signal contribution, and Φv ∈ RNa×Nf is a sparse binary matrix, whose col-

umn indicate primary contributing atoms in individual fibers, in that voxel. Thus, an equation

for all v can be re-written as:

Y = Φ×1 D×2 S0 ×3 wT, (4)

where Φ ×1 D ×2 S0 is 3D representation of matrix M and Φ is a 3D representation ∀ Φv,

with the goal to minimize the error between Y and y of Equation 1.

The optimization problem of Equation 4 is solved using sub-space Barzilie-Borwein non-

negative least squares (SBBNNLS) algorithm [117]. Typically, the SBBNNLS algorithm takes

more than 500 iterations to converge, accounting for more than 92% (3-12h) of the total execu-

tion time of LiFE (for the original naive sequential C language code). Given w0 as the initial

weight vector, for every iteration, the weight vector is updated based on following equation:

w(i+1) = [w(i) − α(i)∇g(w(i))]+, (5)

where gradient,

∇g(w) = MT (Mw − y), (6)

and the α(i) step value for every even iteration is computed using,

α(i) =
〈∇g̃(w(i−1)),∇g̃(w(i−1))〉

〈M∇g̃(w(i−1)),M∇g̃(w(i−1))〉
, (7)

and for the odd iterations using,

α(i) =
〈M∇g̃(w(i−1)),M∇g̃(w(i−1))〉

〈MTM∇g̃(w(i−1)),MTM∇g̃(w(i−1))〉
. (8)

The Equations 5-8 represent typical computations necessary for SBBNNLS of LiFE, also

12 2. Background

shown in Algorithm 1. Note that the tilde sign over gradient g̃ and ”+” subscript in Equa-

tion 5 indicates projection to positive space, i.e., negative values are replaced by zeros.

2.3 Data Conversion Steps

The conversion of dMRI data to the optimized connectome consists of following data struc-

tures.

– dMRI data: Diffusion-weighted magnetic resonance imaging (dMRI) data uses diffusion of

water molecules to produce magnetic resonance images.

– Structural connectivity matrix: Tractography algorithm takes the dMRI data combined

with brain parcellation information as input and produces structural connectivity matrix. Struc-

tural connectivity matrix is similar to an adjacency weight matrix of fibers of a macroscale

connectome, where weights of the matrix are diffusion signal. Note that there are several trac-

tography algorithms available; each generates different structural connectivity matrix based on

various parameters specific to the algorithm.

– Candidate connectome matrix: ENCODE framework [94] helps in conversion of a struc-

tural connectivity matrix to connectome matrix format (M ∈ RNθNv×Nf) (Figure 2.4a).

– Connectome tensor representation: To apply tensor operations the connectome matrix is

converted to the tensor representation (φ) (Figure 2.4b).

– Sparse tensor representation + other data structures: Then the tensor representation (φ)

is converted to sparse tensor representation (Φ) along with other data structures (D and S0)

using low-rank Tucker decomposition technique (Figure 2.4c). Later in this chapter, we will

discuss the how simple matrix operations of the SBBNNLS algorithm (Mw and MTy) are

transformed to a complex sequence of operations, when the matrix M is represented in sparse

tensor format (Φ).

– Optimized connectome: Once the dMRI data is represented in the sparse tensor format, the

LiFE algorithm uses the SBB-NNLS algorithm to prune a candidate connectome to generate

an optimized connectome as output.

Note that the authors of the LiFE algorithm cleverly converted the structural connectivity

2.3. Data Conversion Steps 13

Algorithm 1 SBBNNLS algorithm used in the LiFE algorithm
(rewritten to represent matrix computations).

1: Input : M as a connectome matrix, b as demeaned diffusion
signal, and w0 (a vector) as initial approximation

2: Output : Vector w
3: For i← 0, N − 1
4: The gradient descent method is performed to update weight

vector using following computation:

w(i+1) = [w(i) − α(i)w
′
]+

5: Gradient is calculated using:

y = (Mw(i) − b)

w
′
= MTy

6: The α(i) value is computed for different iterations as follows:
(a) ODD iteration:

v
′
= Mw

′

α(i) =
〈w′

,w
′〉

〈v′ ,v′〉
(b) EVEN iteration:

v
′
= Mw

′

v
′′

= MTv
′

α(i) =
〈v′
,v

′〉
〈v′′ ,v′′〉

7: End For
〈v,v〉 is an inner product of a vector v with itself.
′+′ sign in subscript indicates w is projected to positive space.
′ ∼′ sign over gradient indicates the gradient is projected to the positive space.

14 2. Background

Te
ns

or

re
pr

es
en

ta
tio

n

dMRI data Structural
connectivity matrix

Candidate
connectome matrix (M)

Connectome tensor
representation (ϕ)

Sparse tensor
representation (Φ) +
other data structures

Optimized
connectome

ENCODE
framework

Low-rank Tucker
decomposition

SBB-NNLS
Algorithm

Tractography
Algorithm

Brain
Encoding

Figure 2.3: Steps required for the dMRI dataset conversion to optimized connectome in the
LiFE algorithm.

matrix into a sparse representation using domain-specific information. This way, there was

no requirement to compute and store an extremely large sparse matrix M, which consumed

memory in order of petabytes. Also, as a result of this conversion, the SpMV operation is not

straightforward. Formats such as CSR, COO, ELL and many others [125, 34] do not yield

the desired compression here and will not still fit in typical main memory; so even the non-

zero values of M are not explicitly stored [88]. The sparse Tucker tensor data structures are

obtained directly from the domain data using the low-rank sparse Tucker technique. Later in

Section 6.5, we will see how important this conversion is to reduce memory requirements.

2.4 Matrix Computations using Sparse Tensor Decomposi-

tion

The SBBNNLS algorithm involves two compute-intensive SpMV operations involving the

matrix M, i.e., Mw and MTy. On an average, every iteration (even or odd iteration) of

SBBNNLS requires the Mw operation twice and MTy 1.5 times. In Figure 2.5, it is shown

how these simple SpMV operations are transformed to a complex sequence of operations once

the matrix M is decomposed to a sparse format using STD. The sparse tensor (Φ) stores non-

zero indices, (atomsPtr, voxelsPtr and fibersPtr), along with the values vector (valuesPtr). In

Figure 2.6, one can observe that the three indirection vectors of the Φ tensor — atomsPtr,

voxelsPtr and fibersPtr, redirects to the dictionary matrix DPtr, demeaned diffusion signal

vector YPtr and weight vector wPtr respectively. The detailed algorithm for Mw and MTy

2.4. Matrix Computations using Sparse Tensor Decomposition 15

Nf

Nθ

Nv

1

2

(a) Connectome matrix.

θ

(b) Connectome tensor.

PHI

Dictionary matrix

Nθ

Na

Nc

atomPtr voxelPtr fiberPtr valuesPtr

(c) Sparse representation of decomposed tensor.

Figure 2.4: (a) Connectome matrix (M): a two-dimensional matrix containing diffusion sig-
nal value for the each fascicle (Nf) in all the voxels (Nv) and across all the directions (Nθ)
obtained from a tractography algorithm. (b) Connectome tensor (φ): obtained from a con-
nectome matrix having the first dimension as the fascicle orientation (Nθ), the second di-
mension as the fascicles spatial position in the form of voxels (Nv) and the third dimension
as the fascicles (Nf) of a connectome. (c) Decomposed matrix (Φ): obtained after sparse
tucker decomposition of connectome tensor containing the dictionary matrix DPtr and the
PHI tensor. The PHI tensor consist of non-zero indices of a connectome tensor as
three-dimensions namely atomPtr, voxelPtr and fiberPtr and contains value of non-
zero index as valuesPtr. The dictionary matrix DPtr is approximated canonical diffusion
signal as atoms (Na) across all the directions (Nθ).

16 2. Background

matrix operations are described in [22]. The number of iterations of the outermost loop de-

pends on the number of coefficients (Nc) representing the non-zero indices in the Φ tensor or

the size of the atomsPtr/voxelsPtr/fibersPtr vectors. The number of iterations of the innermost

loop depends on the diffusion directions (Nθ). Note that the innermost loop of Mw and MTy

corresponds to daxpy and dot-product operations respectively. It is also important not-

ing that the wPtr vector is projected to the positive space; hence, the wPtr vector becomes

sparser as it is updated after the execution of each iteration of SBBNNLS (negative values are

replaced by zeros due to non-negativity property of SBBNNLS).

2.4. Matrix Computations using Sparse Tensor Decomposition 17

 PHI DPtr

Nθ

Na

Nc

atomPtr voxelPtr fiberPtr valuesPtr

Nθ

Nθ

YPtr

NvNθ
+ =>

DPtr’ YPtr’old

vw

Nf

wPtr

YPtr’new

**
indirect access
direct access

k

i

(a) Block diagram of y = Mw performing diffusion signal computation (DSC).

 PHI DPtr

Nθ

Na

Nc

atomPtr voxelPtr fiberPtr valuesPtr

Nf

Nθ

Nθ

YPtr

wPtr

NvNθ* => * + =>
indirect access
direct access

DPtr’ YPtr’

tem v w’old w’new

k

i

(b) Block diagram of w = MTy performing weight computation (WC).

Figure 2.5

18 2. Background

1 void M_times_w_sub(double YPtr[], double atomsPtr[], double voxelsPtr[],
2 double fibersPtr[], double valuesPtr[], double DPtr[],
3 double wPtr[], int nTheta, int nVoxels, int nCoeffs){
4 int k, i, atom_index, voxel_index;
5 double val;
6 for(k = 0; k < nCoeffs; k++){
7 atom_index = (int)(atomsPtr[k]-1)*nTheta;
8 voxel_index = (int)(voxelsPtr[k]-1)*nTheta;
9 for(i = 0; i < nTheta; i++){
10 YPtr[voxel_index]= YPtr[voxel_index]+DPtr[atom_index]
11 * wPtr[(int)fibersPtr[k]-1] * valuesPtr[k];
12 atom_index++;
13 voxel_index++;
14 }
15 }
16 return;
17 }

(a) y = Mw: Diffusion signal computation (DSC).

1 void Mtransp_times_b_sub(double wPtr[], double atomsPtr[], double voxelsPtr[],
2 double fibersPtr[], double valuesPtr[], double DPtr[],
3 double YPtr[], int nFibers, int nTheta, int nCoeffs){
4 int k, i, atom_index, voxel_index;
5 double val;
6 for (k = 0; k < nCoeffs; k++){
7 val = 0;
8 atom_index = (int)(atomsPtr[k]-1)*nTheta;
9 voxel_index = (int)(voxelsPtr[k]-1)*nTheta;
10 for (i = 0; i < nTheta; i++){
11 val = val + DPtr[atom_index] * YPtr[voxel_index];
12 atom_index++;
13 voxel_index++;
14 }
15 val = val * valuesPtr[k];
16 wPtr[(int)fibersPtr[k]-1] = wPtr[(int)fibersPtr[k]-1] + val;
17 }
18 return;
19 }

(b) w = MTy: Weight computation (WC).

Figure 2.6: Original sequential CPU code for the SpMV operations used in the LiFE algorithm
(Pestilli and Caiafa [94]).

Chapter 3

Problem and Challenges

In this chapter, we discuss problems and challenges associated with optimizing the SpMV

operations used in the SBBNNLS algorithm.

3.1 Large Dataset

In Equations 5-8, we observe that there are two major SpMV operations involved, namely,

y = Mw and w = MTy. The size of the matrix M depends on parameters such as the

number of voxels (Nv), the number of fascicles (Nf) and the number of diffusion directions

(Nθ). The number of diffusion direction varies from 10-300, voxels range from 105 to 106 and

fibers from 105 to 107; therefore, the memory consumption may range from a few GBs to PBs.

Thus, the matrix will typically not fit in commonly used memory systems. In addition to this, to

obtain the converged weight vector (wPtr) using the SBBNNLS algorithm approximately 500

iterations are required, that is, computation of more than 1500 SpMV operations. As a result,

the LiFE involves large number of compute-intensive operations with very large datasets.

Therefore, to tackle this difficulty, the authors of the LiFE application analyzed the con-

nectome matrices and found that the large matrices are highly sparse in nature [95, 94]. The

exiting approaches to represent sparse matrix such as DIA, COO, ELL and CSR formats are

appropriate for a moderate sized matrix with a specific memory access pattern to exploit data

reuse. However, for the usage of the large sized matrices such as the ones involved in the

19

20 3. Problem and Challenges

LiFE, the existing techniques have a high overhead. Hence, the authors of LiFE proposed a

low-rank Sparse Tucker Decomposition (STD) [117] based approach to represent the matrix

M in a sparse tensor format and decompose it using domain-specific information. After de-

composition, a new challenge of multiple irregular accesses is introduced, and this is discussed

later in this chapter.

3.2 Architecture-specific Challenges

We will discuss some architecture-specific challenges posed in optimizing the SpMV opera-

tions of SBBNNLS.

3.2.1 Multi-core architecture

In multi-core architectures, the processor can execute multiple independent instructions in

parallel, hence improving the speed of a program. Shared memory multi-core architectures

uses a multi-level cache memory to hide latency and reduce memory bandwidth utilization.

Improving data reuse: Shared memory multi-core architectures uses multi-level cache mem-

ory to minimize the delay caused due to memory latency. Hence, the data accessed multiple

times should be reused optimally before eviction from the cache memory.

Exploiting coarse-grained parallelism: Coarse-grained parallelism is splitting of large chunk

of a program so that the communication is minimized across the core. However, the coarse-

grained parallelism requires load balancing so that no core remains idle.

Exploiting fine-grained parallelism: Fine-grained parallelism is spitting small chunks of

programs to facilitate load balancing. However, faces a shortcoming of overhead caused due

to usage of synchronization barrier.

3.2.2 GPU architecture

Modern GPUs are massively parallel, multi-threaded, multi-core architectures with a memory

hierarchy significantly different from CPUs. Exploiting this parallelism and the various levels

3.3. Indirect Array Accesses 21

of the memory hierarchy on a GPU is key to effectively optimizing the SpMV operations of

SBBNNLS.

Exploiting massive parallelism: An appropriate partitioning and mapping of threads to a

thread block or a grid is essential to exploit the massive parallelism on GPUs. One of the chal-

lenges here is to reduce the overhead of communication across the thread blocks and warp-

s/threads of a thread block.

Efficiently using the GPU memory model: The SMs of a GPU share global memory, whereas

local memory is allocated for a single thread. Shared memory is used for sharing data among

threads of a thread block. A GPU provides multiple levels in its memory hierarchy to minimize

the usage of memory bandwidth.

Coalesced memory accesses: Global memory accesses are grouped such that consecutive

threads access successive memory location. When the threads of a warp access memory con-

tiguously, the access is considered fully coalesced otherwise considered partially coalesced

access. Coalesced memory accesses helps to reduce memory bandwidth requirement by load-

ing local memory in as few memory transactions.

3.3 Indirect Array Accesses

As discussed in Section 2.4, after STD-based tensor decomposition, the SpMV operations of

LiFE have several indirect array accesses.

The challenges that arises for CPUs due to unstructured accesses are following: (a) the data

reuse is low, hence memory bandwidth is poorly utilized, and (b) the code is executed sequen-

tially to avoid data races that occur due to the dependent accesses. Due to these challenges,

the original naive sequential CPU implementation [94] achieves 1.01 GFLOPS for DSC op-

eration and 0.69 GFLOPS for WC operation, that is, only 0.1% and 0.069% of the theoretical

machine peak of a CPU system (Skylake based) using double-precision floating point data. On

the same CPU system, the DGEMV benchmark achieves a peak performance of 7.01 GLOPS

and the DGEMM benchmark achieves 919.91 GLOPS. Thus, this shows the significantly low

performance achieved by the original sequential CPU implementation due to the presence of

22 3. Problem and Challenges

multiple irregular array accesses.

For GPUs, these irregular references: (a) hinder the utilization of massive parallelism of

GPUs since synchronization and an atomic operation is required to avoid data races, and (b)

hamper the usage of various fast GPU memory spaces and coalesced memory accesses. Due

to these concerns, a reference optimized GPU implementation [70] achieves 32.02 GFLOPS

for DSC operation and 28.29 GFLOPS for WC operation, that is, only 7.62% and 6.73% of

the theoretical machine peak of a GPU system (Titan based) using double-precision floating

point data. On the same GPU system, the DGEMV benchmark achieves a peak performance

of 144.54 GLOPS and the DGEMM benchmark achieves 548.89 GLOPS. Thus, this shows the

significantly low performance achieved by a reference optimized GPU implementation due to

the presence of multiple irregular array accesses.

These are thus the main challenges in optimizing the SpMV operations of the LiFE algo-

rithm on general-purpose multi-core and GPU systems.

Chapter 4

Optimizations

In this chapter, we discuss details of the techniques we incorporate to optimize the SpMV

operations used in the LiFE algorithm. Firstly, we discuss target-independent optimization

techniques, followed by target-specific optimizations for parallel architectures such as multi-

core and GPU systems. We denote the SpMV operations for computing the diffusion signal

(y = Mw) with DSC and the weight (w = MTy) with WC. Also, in the discussion, wherever

we refer to a sub-vector of a vector (Figure 4.1), it corresponds to any contiguous part of a

sorted indirection vector having the same element value.

0 1 1 2 30 3 4 4 5 54

sub-vectors

voxelsPtr vector

8 9 47 0 8 7 35 YPtr vector

Nθ Nθ Nθ

Figure 4.1: Sub-vectors of the voxelsPtr indirection vector.

4.1 Target-independent Optimizations

This section introduces target-independent optimizations such as: (1) basic compiler optimiza-

tions to avoid unnecessary and redundant computations, (2) various data restructuring methods

23

24 4. Optimizations

for inducing a potential regularity in the irregular accessed data; also contributing to make fur-

ther optimizations valid and fruitful, and (3) different ways to partition computations among

parallel threads to effectively exploit parallelism with low synchronization overhead.

4.1.1 Basic Compiler Optimizations

In this sub-section, we discuss some of the standard compiler optimizations that we incorporate

to obtain trivial performance improvement.

Removing redundant computation: The dictionary matrix (DPtr) and the demeaned

diffusion signal matrix (YPtr) are used in the vector format for the SpMV operations (refer to

Figure 2.6). Therefore, to compute the actual offset of these vectors, we multiply the number

of diffusion direction (Nθ) with the elements of the atomsPtr and voxelsPtr indirection vec-

tors. The original sequential CPU code computes the actual offset for every iteration of the

SpMV operations of the SBBNNLS algorithm. However, we removed this redundant compu-

tation, by computing it one time before the start of SBBNNLS in the MATLAB code of LiFE.

This reduced the overhead of computing the actual offsets for DPtr and YPtr in the SpMV

computations.

Loop-invariant code motion: Loop-invariant code motion optimization is utilized when

a code fragment performs the same operation and computes the same output value for the

different iterations of a loop, then that code fragment is hoisted out of the loop. In LiFE,

the DSC operation computes the product of the weight vector (wPtr) and the values vector

(valuesPtr), which remains same for the innermost loop of SpMV operations. Hence, this

code fragment is hoisted out and its result is stored in a temporary variable to utilize it across

the several iterations of the loop. Thus, this optimization reduced the overhead of computing

the invariant-code from several times for the innermost loop to one time.

Strength reduction for arrays: Some expressions that take more memory and CPU cy-

cles to execute, can be compensated by an equivalent though less expensive expression. In

4.1. Target-independent Optimizations 25

LiFE application, the indirection vectors such as atomsPtr, voxelsPtr and fibersPtr are stored

and passed as a double precision data type, and used as an index (after explicit type conversion

to integer) for the DPtr, YPtr and wPtr vectors respectively. Thus, to reduce memory con-

sumption and exploit a less expensive expression for these double precision indirection vectors,

they are casted to the integer data type. This optimization is incorporated before the start of

SBBNNLS in the MATLAB code and utilized across the several iterations of SBBNNLS. In

addition to that, this optimization helped to cut down the data transfer overheads on GPUs due

to the reduced size of the indirection vectors.

These simple and straightforward optimizations can be incorporated for both the DSC and

WC operations without much effort.

4.1.2 Data Restructuring

The LiFE algorithm is highly irregular due to the presence of multiple indirectly accessed

arrays. In Figure 2.5, we observe that due to the STD-based representation of the matrix M in

SpMV, three indirection vectors are involved — atomsPtr, voxelsPtr and fibersPtr, redirecting

to the DPtr, YPtr and wPtr vectors respectively. These indirect array accesses procure low

data reuse and prove to be a major hindrance in code parallelization as well; thus, they are a

major bottleneck in optimizing the SpMV.

After analyzing the sparse datasets of LiFE, we observe that there exist several element

values of an indirection vector redirecting to the same location of an indirectly accessed vec-

tor. Therefore, this is a potential source to exploit data locality. To utilize this property of the

sparse datasets, we restructure the Phi tensor (3-D sparse representation of M, represented

by Φ) data based on an indirection vector to leverage regular data access patterns. If the Φ

tensor is restructured based on one of the indirection vectors (for example voxelsPtr), then the

other indirection vectors (such as atomsPtr and fibersPtr) are accessed irregularly. Hence, a

major challenge in optimizing this irregular application is to identify a near-optimal method to

restructure with low runtime overhead. Thus, to achieve high performance for an SpMV oper-

ation, we determine the data restructuring to be incorporated at runtime based on the choice of

a dimension (such as atom, voxel or fiber). We now discuss different data restructuring choices

26 4. Optimizations

coupled with their strengths and weaknesses.

Atom-based Data Restructuring: In the atom-based data restructuring method, we sort

the atomsPtr vector, and depending on that, the Φ tensor is restructured by reordering the

voxel, fiber, and values dimensions. This method captures data reuse for the dictionary vector

DPtr in both the DSC and WC operations; but it leads to poor data reuse along the other two

indirectly accessed dimensions, that is, voxel and fiber.

Voxel-based Data Restructuring: In the voxel-based data restructuring method, we sort

the voxelsPtr vector, and depending on that, the Φ tensor is restructured by reordering the

atom, fiber, and values dimensions. This data restructuring method captures data reuse for the

demeaned diffusion signal vector YPtr in the DSC and WC operations; but it leads to poor data

reuse along the other two indirectly accessed dimensions, atom and fiber.

Fiber-based Data Restructuring: In the fiber-based data restructuring method, we re-

order fibersPtr, and depending on that, the Φ tensor is restructured by reordering the atom,

voxel, and values dimensions. The fiber-based approach captures data reuse for the wPtr

vector. However, this approach loses a chance to capture data reuse for the vectors YPtr and

DPtr. By inspection we found that YPtr and DPtr vectors captures a much better regular

data access pattern compared to wPtr. Thus, we skip the fiber-based data restructuring for

further analysis.

Hybrid Data Restructuring: Hybrid data restructuring technique is a merger of the atom-

based and the voxel-based data restructuring methods. In this technique, we first execute the

DSC and WC operations for both the atom-based and the voxel-based restructuring method three

times, and based on the average execution time, we select a dimension that achieves better per-

formance for an SpMV operation. Therefore, we obtain data reuse along the atom dimension

or the voxel dimension. Then, the Φ tensor is restructured again by reordering the sub-vectors

of the selected dimension, to capture a chance of data reuse along the other dimension (that

is, other than the selected dimension). This technique will be useful for very large datasets.

4.1. Target-independent Optimizations 27

However, currently for this method, the performance improvement is almost negligible due to

the data access patterns of the low-resolution datasets used by us and additionally, this tech-

nique has a high overhead of an additional data restructuring. Hence, we skip the hybrid-based

restructuring for further evaluation as we use only low-resolution datasets (having small mem-

ory utilization) for our evaluation.

Another advantage of data restructuring besides from that of significant improvements in

data reuse due to regular accesses is that the other optimizations to exploit parallelism and

reduce synchronization overheads (discussed later in this section) become valid and profitable.

Therefore, data restructuring play a key role to optimize the SpMV operations of LiFE.

The data restructuring to be incorporated is dependent on the input dMRI data and other

parameters (such as the number of voxels and fibers) along with a tractography algorithm used.

Therefore, we automate the determination of the data restructuring at runtime, by choosing a

technique having lower average execution time for three runs. We included the data restruc-

turing optimization in the LiFE algorithm’s MATLAB implementation before invoking the

SBBNNLS algorithm, so that the overhead (3-5% of the total execution time of SBBNNLS) is

amortized across several iterations of the non-negative least-squared algorithm. Note that for

a different architecture and an SpMV of LIFE, the data restructuring technique that obtains a

near-optimal performance may vary.

4.1.3 Computation Partitioning

Post data restructuring, the other problem in improving performance of the SpMV operations

was the usage of an atomic operation, which was required due to parallel threads performing

a reduction in the DSC and WC operations (Figure 2.6). This causes a high synchronization

overhead at runtime, detrimental to the exploitation of massive parallelism on multi-cores and

GPUs. We note that the communication among threads can be reduced by mapping computa-

tions of the outermost loop of SpMV to a single thread based on the coefficient (Nc) parameter

of the LiFE, or on the atomsPtr or the voxelsPtr dimension. Thus, another major challenge

28 4. Optimizations

in optimizing the SpMV operations is to determine a method to partition computations for ef-

fectively exploiting parallelism and further improving the data reuse for the YPtr and DPtr

vectors. We discuss various approaches to handle the computations performed by each thread

block in addition to their merits and demerits in detail.

Coefficient-based computation partitioning: In the coefficient-based computation par-

titioning technique, a single thread handles computations of a single coefficient or in other

words single non-zero value of the sparse tensor (Φ). The parallelism provided by multi-cores

and GPUs can be effectively used by the coefficient-based technique, but this leads to a loss of

data reuse for the YPtr and DPtr vectors. Additionally, as stated in Section 2.4, the wPtr

vector is projected to positive space, implying that the negative values are replaced by zeros.

This sparse property of wPtr is particularly useful for the DSC operation as a lot of unneces-

sary computations can be avoided. However, this computation partitioning technique requires

usage of an atomic operation due to the reduction of the YPtr and wPtr vectors in the DSC

and WC operations respectively. The coefficient-based technique also hinders incorporation of

certain other optimizations discussed later in this section.

Atom-based computation partitioning: In the atom-based computation partitioning tech-

nique, computations are partitioned across the threads based on the atom dimension, where

each thread handles computations of a particular atom. Therefore, this technique obtains good

data reuse for DPtr but lose an opportunity to exploit data reuse for YPtr. Note that the

atom-based computation partitioning uses the atom-based data restructuring.

Voxel-based computation partitioning: In the voxel-based partitioning technique, com-

putations are partitioned across the voxels, where each thread handles computations of one

voxel. In this way, the voxel-based partitioning obtains excellent data reuse for YPtr (as it is

accessed twice due to reduction) but lose an opportunity to exploit data reuse for DPtr. Note

that the voxel-based computation partitioning uses the voxel-based data restructuring.

4.2. Target-specific Optimizations 29

The disadvantage of using the atom-based and the voxel-based techniques are (1) all it-

erations associated with a sub-vector of voxel or atom dimension are executed sequentially;

therefore, this leads to a loss to fully utilize the sparse property of wPtr, and (2) each thread

block handles several iterations depending on the size of a sub-vector, where the size may vary

from one to thousands of iterations; hence, this induces load imbalance. Therefore, due to

the moderate parallelism of multi-core CPUs, the load imbalance might be more prominent in

them. Thus, to tackle the load imbalance in CPUs, we propose a new technique discussed later

in Section 4.2.1.2. However, on GPUs, the load imbalance issue does not impact much because

the number of iterations of the outermost loop (Nc) in the SpMV operations is extremely large

compared to the maximum possible thread blocks that can be scheduled to even the modern

GPUs.

Therefore, this optimization helped in exploiting coarse-grained parallelism with excellent

data reuse. We also observed that avoiding the atomic operation improves the performance

considerably than taking advantage of the sparse property of wPtr. Thus, by performing ex-

periments on the datasets used by us, we found that for DSC the coefficient-based partitioning

is favourable for CPUs and the voxel-based partitioning is favourable for GPUs, whereas for

WC the coefficient-based technique is favourable for both CPUs and GPUs.

4.2 Target-specific Optimizations

In this section, we present target-specific optimization techniques to optimize SpMV operation

of LiFE on multi-core and GPU architectures.

4.2.1 CPU-specific Optimizations

Firstly, we discuss benefits and applicability of incorporating target-independent optimizations

on CPUs. Then we introduce CPU-specific optimizations such as efficient synchronization-

free thread mapping to utilize coarse-grained parallelism with reduced load imbalance and

usage of BLAS library calls to exploit fine-grained parallelism.

30 4. Optimizations

4.2.1.1 Target-independent optimizations on CPUs

In Section 4.1, we discussed three target-independent optimizations for SpMV operations of

LiFE. The basic compiler optimizations presented are directly applicable to obtain trivial per-

formance improvement on CPUs. The data restructuring optimization helped to enhance data

reuse for YPtr and DPtr vectors in SpMV operations, and further assisted to validate paral-

lelism. Next, we presented different ways to partition computations among the parallel threads

to exploit coarse-grained parallelism. However, this optimization aggravated the issue of load

imbalance for atom-based and voxel-based partitioning, and an issue of high synchronization

overhead for the coefficient-based partitioning due to the usage of an atomic operation to avoid

data races. It is difficult to improve the load balance for the atom-based and voxel-based par-

titioning methods; however, for the coefficient-based partitioning, the overhead issue can be

addressed if the atomic operation is evaded. Hence, to tackle this issue we propose a CPU-

specific optimization, which is discussed next in this section.

4.2.1.2 Efficient Synchronization-free Thread Mapping

Earlier in Section 4.1.3, we discussed various ways to partition computations to the parallel

threads. We concluded that for both the SpMV operations, the atom-based and the voxel-based

partitioning techniques were not profitable due to the load imbalance issue. In addition to that,

the atom-based and voxel-based methods required an atomic operation due to the reduction of

YPtr vector in DSC operation and wPtr vector in WC operation respectively. Whereas, the

coefficient-based did not have a prominent load imbalance issue but still it was not profitable

due to the usage of an atomic operation.

For WC operation, we observe that for different computation partitioning techniques, the

performance is influenced due to the usage of an atomic operation for the reduction of wPtr;

although, based on experiments we discovered that the usage of the atomic operation did not

deteriorate the performance much. We found that coefficient-based partitioning is the best

choice among the other methods because it exhibits a much better load balance. However, for

DSC, we observed that there was a significant drop in performance due to the usage of atomic

operation (for all the partitioning methods) and the load imbalance issue (for atom and voxel

4.2. Target-specific Optimizations 31

based methods). Thus, using the coefficient-based partitioning method, we tackle this issue

by proposing an efficient synchronization-free thread mapping technique to exploit coarse-

grained parallelism without the usage of an atomic operation to improve the performance of

DSC.

In Figure 4.2, we observe the usage of coefficient-based splitting technique for the different

data restructuring methods for DSC. Figure 4.2a shows the atom-based restructuring technique

reorders the voxelsPtr vector in such a way that there are high chances of data race at run-

time; hence, this method exhibits poor performance due to requirement an atomic operation to

avoid data race. Figure 4.2b shows that the voxel-based technique has a low chance of data

dependence but cannot be eliminated completely; hence, this technique too requires an atomic

operation. However, we found that there only two instances might occur for a sub-vector of

0 2 5 9 11 3 8 8 0 35 4 5 44

0

5 3 7 5 26 5 1 9 5 20 2 7 43

1 2 3

YPtr
(indirect accessed vector)

threads

voxelPtr
(indirection vector)

conflicting
access

(a) Atom-based data restructuring.

0

5 3 7 5 26 5 1 9 5 20 2 7 43

1 2 3

voxelPtr
(indirection vector)

threads

YPtr
(indirect accessed vector)

0 1 1 2 30 3 4 4 5 54 5 8 98

case 1 case 2

(b) Voxel-based data restructuring.

Figure 4.2: The diagram represents the atomsPtr vector redirecting to the YPtr vector.

(a) voxelPtr indirection vector is irregular when reordered based on the atom dimension.

(b) voxelPtr indirection vector is structured when reordered based on the voxel dimension.

The case 1 represents a sub-vector of the voxelPtr scheduled completely to a single threads.

Whereas, the case 2 represents a sub-vector of the voxelPtr split across the two threads.

32 4. Optimizations

the voxelsPtr vector when the voxel-based data restructuring method is employed. These in-

stances are: (1) the entire sub-vector is scheduled to the same thread; hence, it causes no issue

due to sequential execution of the iterations of the sub-vector (case 1 of Figure 4.2b), and

(2) the sub-vector is split across the two threads (case 2 of Figure 4.2b); therefore, for this

case an atomic operation is required due to a chance of data dependence at run-time.

To tackle this issue, we ensure that the sub-vector of the voxelsPtr vector is scheduled to

the same thread with a low load imbalance. In Figure 4.2b, we can observe in the case 2

that the sub-vector (with 4 value) is split across the threads 1 and 2. To avoid any chance

of occurrence of conflicting access, the sub-vector has to be scheduled to either of the one

thread. If the sub-vector is scheduled to the thread-1 then it will compute two additional

computations, whereas if the sub-vector is scheduled to the thread-2 then it will compute

only one additional computation. Hence, scheduling the sub-vector to the thread-2 will

help to reduce the load imbalance. The small overhead of load imbalance is a necessary trade-

off considering the reduction in execution time obtained for parallel execution of the DSC

operation without the usage of an atomic operation.

Thus, to exploit the coarse-grained parallelism for the DSC operation without atomic

operation and with reduced load imbalance, we proposed an efficient synchronization-free

thread mapping using the coefficient-based partitioning and the voxel-based data restructuring

method.

4.2.1.3 Mapping to BLAS calls

Basic linear algebra subroutines (BLAS)1 packages are often hand-optimized to obtain close

to peak performance on various hardware. It is thus useful to leverage these automatically in a

DSL setting. We make use of optimized BLAS call in the SpMV operations of the SBBNNLS

algorithm. BLAS call improved the overall performance of the LiFE algorithm significantly.

We discuss usage of a BLAS call in each of the SpMV operations of SBBNNLS.

1Usage of BLAS calls on Intel platforms have a slightly different result on different runs of the same program
due to rounding error. https://github.com/xianyi/OpenBLAS/issues/1627

4.2. Target-specific Optimizations 33

BLAS call for DSC operation: The code fragment in the innermost loop of DSC (refer

to Figure 2.6a) corresponds to scalar-vector product. We substitute the code fragment with

the daxpy BLAS call to obtain significant performance improvement. In the BLAS call,

dictionary vector (DPtr) is used as an input vector and the product of a value in the weight

vector (wPtr) and the values vector (valuesPtr) is used as a scalar input. The output is

used to update the demeaned diffusion signal vector (YPtr).

According to the SBBNNLS stated in Algorithm 1, wPtr is projected to the positive space;

hence, due to this property of wPtr the negative values are replaced by zeros. Therefore, the

wPtr vector is sparse in nature. Hence, in the DSC operation, if the scalar value obtained from

the product vector wPtr and vector valuesPtr is zero then invoking the BLAS call is futile

and should be avoided to refrain from unnecessary computations.

BLAS call for WC operation: The code fragment in the innermost loop of WC (refer to

Figure 2.6b) corresponds to vector-vector dot product. We substitute the code fragment with

the dot BLAS call to obtain performance improvement. In dot BLAS call, the YPtr and

DPtr vectors are used to update the wPtr vector. However, in contrast to the DSC operation,

the execution time remains almost the same throughout SBBNNLS.

Usage of BLAS call provided fine-grained parallelism for the SpMV operations and improved

the performance considerably. Particularly, the DSC operation was greatly benefited by the

usage of the BLAS call.

To summarize the optimization of SpMV on CPUs, first we performed the target-independent

optimizations, followed by the CPU-specific optimizations to obtain a highly optimized CPU

code for the SpMV operations of SBBNNLS. We also extended the PolyMage DSL to in-

corporate all the optimization presented in this section to automatically generate optimized

parallelized code involving the sparse representation of the SpMV operations of SBBNNLS

and obtained comparable performance to that of the manually optimized version (CPU-opt).

We will discuss more on the DSL extension in Chapter 5. Note that some of the CPU opti-

mizations require runtime data analysis such as the optimization presented in Section 4.2.1.2.

34 4. Optimizations

Thus, it could not be incorporated for the automated CPU code version and as a result the

automated code version could not achieve the similar performance compared to that of the

hand-optimized CPU code version.

4.2.2 GPU-specific Optimizations

Firstly, we discuss benefits and applicability of incorporating target-independent optimizations

on GPUs. Then, we present various GPU-specific optimizations to optimally map threads at the

granularity of warps, thread blocks and grid to obtain fine-grained parallelism and improved

data reuse. We use GPU code developed by Madhav [70], shown in Figure 4.3, as a reference

GPU code version.

4.2.2.1 Target-independent optimizations on GPUs

In Section 4.1, we discussed a number of target-independent optimizations for SpMV oper-

ations. For GPUs, the basic compiler optimizations presented is useful to obtain minor per-

formance improvement. The data restructuring optimization proposed captured enhanced data

reuse for YPtr and DPtr vectors, and further aided to legitimize parallelism. Following that,

we presented different ways to partition computations among the parallel threads to exploit

coarse-grained parallelism. However, this optimization had similar issues for a GPU that we

discussed in Section 4.2.1.1 for a CPU; although, the issue of the load balance discussed ear-

lier for a CPU is not prominent for a GPU due to its massive parallelism. Thus, we do not

introduce any new optimization to tackle load imbalance issue for the GPUs and take a step

forward to exploit fine-grained parallelism in the SpMV operations.

4.2.2.2 Exploiting Fine-Grained Parallelism

The reference optimized GPU approach executes the innermost loop of both the SpMV op-

erations sequentially (Figure 4.3). It was performed due to the indirect array accesses of the

SpMV operations and the concurrent scheduling of multiple iterations of the outermost loop to

a single thread block; hence, the innermost loop had to be executed sequentially to avoid a data

4.2. Target-specific Optimizations 35

1 __global__ void M_times_w(const long *atomPtr, const long *voxelPtr,
2 const long *fibersPtr, const double *valuesPtr,
3 const double *DPtr, const double *wPtr,
4 const int nTheta, const long nVoxels,
5 const long nCoeffs, double *yPtr) {
6 long k = threadIdx.x + blockIdx.x * blockDim.x;
7 long offset = 0;
8 long stride = gridDim.x * blockDim.x;
9 while ((k + offset) < nCoeffs) {
10 long atom_index = atomsPtr[k + offset];
11 long voxel_index = voxelsPtr[k + offset];
12 double val1 = wPtr[fibersPtr[k + offset]];
13 double val2 = valuesPtr[k + offset];
14 for (int i = 0; i < nTheta; i++) {
15 atomicAdd(&YPtr[voxel_index][i], DPtr[atom_index][i] * val1 * val2);
16 }
17 offset += stride;
18 }
19 return;
20 }

(a) C++/CUDA GPU code for y = Mw.

1 __global__ void Mtransp_times_b(const long *atomPtr, const long *voxelPtr,
2 const long *fibersPtr, const double *valuesPtr,
3 const double *DPtr, const double *YPtr,
4 const long nFibers, const int nTheta,
5 const long nCoeffs, double *wPtr) {
6 long k = threadIdx.x + blockIdx.x * blockDim.x;
7 long offset = 0;
8 long stride = gridDim.x * blockDim.x;
9 while ((k + offset) < nCoeffs) {
10 double val = 0;
11 long atom_index = atomsPtr[k + offset];
12 long voxel_index = voxelsPtr[k + offset];
13 for (int i = 0; i < nTheta; i++) {
14 val += DPtr[atom_index][i] * YPtr[voxel_index][i];
15 }
16 val = val * valuesPtr[k + offset];
17 atomicAdd(&wPtr[fibersPtr[k + offset]], val);
18 offset += stride;
19 }
20 return;
21 }

(b) C++/CUDA GPU code for w = MTy.

Figure 4.3: Reference GPU code (Ref-opt) for the SpMV operations of LiFE.

36 4. Optimizations

race. Thus, due to these reasons, the reference GPU approach missed out an important oppor-

tunity to exploit fine-grained parallelism. However, with the aid of resources and instructions

provided by a GPU architecture, we could exploit fine-grained parallelism; hence, it helps in

obtaining substantial performance improvement in both the SpMV operations. We discuss the

different techniques to achieve fine-grained parallelism in the DSC and WC.

Shared memory: Shared memory is an on-chip explicitly addressed memory with signif-

icantly lower memory latency than local and global memories of GPUs. It is key in reducing

memory access time when data accessed by the threads of a thread block exhibit reuse.

In Figure 4.3a, we notice in the DSC code that the innermost loop (line 15) performing the

daxpy operation is executed sequentially. We used shared memory to execute the iterations

of the innermost loop in parallel, though with the usage of a synchronization barrier. However,

later in Section 4.2.2.3, we will note that the threads can be executed without the employment

of a memory fence. The added advantage of using the shared memory is reduced memory

bandwidth requirements obtained due to data reuse of YPtr. Also, note that the size of shared

memory required depends on the diffusion direction (Nθ).

Shuffle instruction: Parallel threads of a thread block share data using shared memory.

However, NVIDIA’s Kepler architecture introduced a new warp-level instruction, named, shuf-

fle instruction (SHFL) [35], to be utilized when the data is to be shared directly among the

parallel threads of a warp. It leads to a considerable reduction in latency without the use of

shared memory.

In Figure 4.3b, we observe in the WC code that the innermost loop (line 14) performing

dot-product operation is executed sequentially. The dot-product involves two sub-

operations — (1) multiply corresponding elements of the vectors, which can be performed in

parallel, (2) perform a reduction, which is performance bottleneck if performed sequentially. A

popular method to perform reductions in GPUs is to use shared memory. This method however

is dependent on the size of shared memory and requires the employment of a memory fence,

thereby hurting performance. An alternative method is to use the SHFL instruction [35]. It

helps to share data directly among the parallel threads of a warp, but requires the usage of

4.2. Target-specific Optimizations 37

a synchronization barrier and shared memory, across the warps of a thread block. However,

later in Section 4.2.2.3, we will tackle the synchronization bottleneck as well. Using SHFL,

we parallelized the dot-product to significantly reduce the execution time of WC.

Thus, in Figure 4.4b, we can observe that after incorporating the fine-grained paralleliza-

tion, the innermost loop of an SpMV operation is executed in parallel, where each thread block

handles the iterations of a single sub-vector of voxelsPtr. Note that the computations associ-

ated with an iteration of the sub-vector are executed in parallel. However, the computations

across the iterations are executed sequentially, requiring the syncthread barrier in between the

iterations. We tried to replace the daxpy computation in the innermost loop of the DSC code

and the dot-product computation in the innermost loop of the WC code with appropri-

ate cuBLAS library calls, but were unsuccessful due to the difficulty in interfacing this from

MATLAB.

4.2.2.3 Reduce Synchronization Overhead by using Warp-based Thread Execution

On NVIDIA GPUs, a warp is a collection of a certain number of threads (typically 32) execut-

ing the same code in lock-step and is best used when each thread follows the same execution

path. When there are a number of warps sharing data or performing dependent pieces of

computation, those pieces need to be synchronized and this could impact performance. As

discussed earlier in Section 4.2.2.2, the SpMV operations of the LiFE algorithm face a similar

challenge.

In Figure 4.4b, we observe that the iterations of the innermost loop of the SpMV operations

executing in parallel require syncthread barrier across the warps of a thread block. However,

by transforming the innermost loop, multiple warps can be replaced by a single warp. Note

that the innermost loop parameter depends on Nθ, which is typically a multiple of 32 for most

of the dMRI datasets (96 for dMRI datasets we used). So the innermost loop is transformed

such that the 32 iterations are executed in parallel by a warp, and then the next 32 iterations

are executed in parallel by the same warp, i.e., Nθ/32 times sequential execution (as shown

in Figure 4.4c, Nθ=96 requires three sequential executions). The advantage of this change

is that we can utilize syncwarp, a much less expensive barrier operation when compared to

38 4. Optimizations

syncthread()

syncthread()

syncthread()

0 95

0 31 32 63 64 95

Thread block

Warp1 Warp2 Warp3

0
0
0

Iterations of the
innermost loop (Nθ= 96)

vo
xe

ls
P

tr

YPtr vector

Iterations of the
innermost loop

(Nθ= 96)

vo
xe

ls
P

tr

Parallel execution

0 31

syncwarp

0 31

32 63

64 95

0 31

32 63

64 95

TB

Warp

0 31

S
eq

ue
nt

ia
l e

xe
cu

tio
n

Parallel execution

syncwarp

0 63

Parallel execution

Thread block

S
eq

ue
nt

ia
l e

xe
cu

tio
n

S
eq

ue
nt

ia
l e

xe
cu

tio
n

0 0 0
voxelsPtr

at
om

ic
A

dd

at
om

ic
A

dd

Sequential
execution

YPtr

Sequential
execution

Sequential
execution

YPtr YPtr

(Nθ= 96)

(Nθ= 96) (Nθ= 96)

0
0

Iterations of the
innermost loop

(Nθ= 96)

vo
xe

ls
P

tr

0 31

syncwarp

0 31

32 63

64 95

0 31

32 63

64 95

Warp1

syncwarp

0
0

Iterations of the
innermost loop

(Nθ= 96)

vo
xe

ls
P

tr

0 31

syncwarp

0 31

32 63

64 95

0 31

32 63

64 95

Warp1

syncwarp

1
1

(a)

syncthread()

syncthread()

syncthread()

0 95

0 31 32 63 64 95

Thread block

Warp1 Warp2 Warp3

0
0
0

Iterations of the
innermost loop (Nθ= 96)

vo
xe

ls
P

tr

YPtr vector

Iterations of the
innermost loop

(Nθ= 96)

vo
xe

ls
P

tr

Parallel execution

0 31

syncwarp

0 31

32 63

64 95

0 31

32 63

64 95

TB

Warp

0 31

S
eq

ue
nt

ia
l e

xe
cu

tio
n

Parallel execution

syncwarp

0 63

Parallel execution

Thread block

S
eq

ue
nt

ia
l e

xe
cu

tio
n

S
eq

ue
nt

ia
l e

xe
cu

tio
n

0 0 0
voxelsPtr

at
om

ic
A

dd

at
om

ic
A

dd

Sequential
execution

YPtr

Sequential
execution

Sequential
execution

YPtr YPtr

(Nθ= 96)

(Nθ= 96) (Nθ= 96)

0
0

Iterations of the
innermost loop

(Nθ= 96)

vo
xe

ls
P

tr

0 31

syncwarp

0 31

32 63

64 95

0 31

32 63

64 95

Warp1

syncwarp

0
0

Iterations of the
innermost loop

(Nθ= 96)

vo
xe

ls
P

tr

0 31

syncwarp

0 31

32 63

64 95

0 31

32 63

64 95

Warp1

syncwarp

1
1

(b)

syncthread()

syncthread()

syncthread()

0 95

0 31 32 63 64 95

Thread block

Warp1 Warp2 Warp3

0
0
0

Iterations of the
innermost loop (Nθ= 96)

vo
xe

ls
P

tr

YPtr vector

Iterations of the
innermost loop

(Nθ= 96)

vo
xe

ls
P

tr

Parallel execution

0 31

syncwarp

0 31

32 63

64 95

0 31

32 63

64 95

TB

Warp

0 31

S
eq

ue
nt

ia
l e

xe
cu

tio
n

Parallel execution

syncwarp

0 63

Parallel execution

Thread block

S
eq

ue
nt

ia
l e

xe
cu

tio
n

S
eq

ue
nt

ia
l e

xe
cu

tio
n

0 0 0
voxelsPtr

at
om

ic
A

dd

at
om

ic
A

dd

Sequential
execution

YPtr

Sequential
execution

Sequential
execution

YPtr YPtr

(Nθ= 96)

(Nθ= 96) (Nθ= 96)

0
0

Iterations of the
innermost loop

(Nθ= 96)

vo
xe

ls
P

tr

0 31

syncwarp

0 31

32 63

64 95

0 31

32 63

64 95

Warp1

syncwarp

0
0

Iterations of the
innermost loop

(Nθ= 96)

vo
xe

ls
P

tr

0 31

syncwarp

0 31

32 63

64 95

0 31

32 63

64 95

Warp1

syncwarp

1
1

(c)

syncthread()

syncthread()

syncthread()

0 95

0 31 32 63 64 95

Thread block

Warp1 Warp2 Warp3

0
0
0

Iterations of the
innermost loop (Nθ= 96)

vo
xe

ls
P

tr

YPtr vector

Iterations of the
innermost loop

(Nθ= 96)

vo
xe

ls
P

tr

Parallel execution

0 31

syncwarp

0 31

32 63

64 95

0 31

32 63

64 95

TB

Warp

0 31

S
eq

ue
nt

ia
l e

xe
cu

tio
n

Parallel execution

syncwarp

0 63

Parallel execution

Thread block

S
eq

ue
nt

ia
l e

xe
cu

tio
n

S
eq

ue
nt

ia
l e

xe
cu

tio
n

0 0 0
voxelsPtr

at
om

ic
A

dd

at
om

ic
A

dd

Sequential
execution

YPtr

Sequential
execution

Sequential
execution

YPtr YPtr

(Nθ= 96)

(Nθ= 96) (Nθ= 96)

0
0

Iterations of the
innermost loop

(Nθ= 96)

vo
xe

ls
P

tr

0 31

syncwarp

0 31

32 63

64 95

0 31

32 63

64 95

Warp1

syncwarp

0
0

Iterations of the
innermost loop

(Nθ= 96)

vo
xe

ls
P

tr

0 31

syncwarp

0 31

32 63

64 95

0 31

32 63

64 95

Warp1

syncwarp

1
1

(d)

Figure 4.4: (a) Sequential execution of iterations of a sub-vector of the voxelsPtr vec-
tor scheduled to single thread block. (b) Parallel execution of innermost loop (Nθ=96) and
sequential execution of a sub-vector of voxelsPtr scheduled to three warps and a single
thread block. (c) Parallel execution of innermost loop (Nθ=96) and sequential execution of a
sub-vector of the voxelsPtr scheduled to single warp and a single thread block. (d) Parallel
execution of innermost loop (Nθ=96) and sequential execution of two distinct sub-vectors of
the voxelsPtr scheduled to single warp and a single thread block.

4.2. Target-specific Optimizations 39

the syncthread barrier. This will also benefit the next set of optimizations we incorporate to

optimize SpMV (discussed later in this section). However, if Nθ is not a multiple of 32 then the

zeros are padded for the YPtr and DPtr vectors to tune their dimensions to a multiple of 32.

The overhead (2-3% of the total execution time of SBBNNLS) of padding is low considering

that it is amortized across the several iterations of SBBNNLS.

4.2.2.4 Exploiting Additional Data Reuse

Earlier in Section 4.1.3, we discussed different ways to partition computations of the outermost

loop of the SpMV operations among the thread blocks. We scheduled computations of a

single coefficient, voxel or atom dimension to a single thread block (Figure 4.4a); so that

the atomic operation hindering the coarse-grained parallelism could be avoided. Despite this

optimization, a thread block could not fully utilize the resources allocated by a GPU (such as

shared memory and cache memory). The reasons for this were: (1) the size of Nθ is small,

and (2) only one warp is scheduled per thread block because of the optimization discussed in

Section 4.2.2.3 (shown in Figure 4.4c).

However, we found that resources allocated for a single thread block could be utilized

optimally (Figure 4.4d) by scheduling multiple computations of coefficients, voxels or atoms

could to a single thread block. Thus, this optimization would help to effectively utilize shared

memory to exploit an additional data reuse for the YPtr and DPtr vectors, thereby leads

to reduction of memory bandwidth consumption. Additionally, the synchronization overhead

will also reduce due to the usage of the syncwarp barrier. To obtain near-optimal performance

improvements on this aspect, we empirically determined the right number of computations to

be scheduled for a thread block. We found that for both the DSC and WC, four computations

per thread block provided the near-optimal performance.

4.2.2.5 Loop Unrolling

Loop unrolling is straightforward and well-known to improve performance by reducing con-

trol overhead, providing more instruction scheduling freedom, and increasing register reuse.

40 4. Optimizations

Using loop unrolling, we achieve an additional performance improvement for the DSC oper-

ation. However, a similar performance improvement was not observed for the WC operation

because the loop index was static; so the compiler might have automatically unrolled the loop.

We determined the unroll factor by performing a few experiments and found eight was optimal

unroll factor for the DSC. We used #pragma unroll N (where N is unroll factor) to unroll

the loop corresponding to the iterations of the sub-vector of an indirection vector (example

voxelsPtr) in the CUDA code of the DSC of SBBNNLS.

To summarize the optimization of SpMV on GPUs, first we performed the target-independent

optimizations, followed by the GPU-specific optimizations to obtain a highly optimized GPU

code for the SpMV operations of SBBNNLS.

Chapter 5

Domain-Specific Language Extensions

In this chapter, we provide a brief overview of the PolyMage DSL and a description of the

constructs we added to the DSL, in order to express sparse matrices and the related operations

used in the LiFE algorithm.

5.1 PolyMage DSL

Mullapudi et al. [85] developed PolyMage, a domain-specific language (DSL) and a compiler

for image processing pipelines. PolyMage automatically generates optimized parallelized C++

code from a high-level language embedded in the Python. The PolyMage compiler is based

on a polyhedral framework for code transformation and generation. The constructs used in the

PolyMage represents a high-level code in a polyhedral format. The compiler then performs

various optimizations such as loop fusion, loop tiling across various functions and also marks

loop(s) parallel. Some constructs used in the PolyMage DSL are the following: Parameter

construct used to declare a constant value and Variable construct used to declare a variable

which usually serves as labels for a function dimension. The range of a variable is declared

using Interval construct. Function construct is used to declare a function mapping from

a multi-dimensional integer domain to a scalar value. Conditional construct is used to

specify constraints involving variables, parameters and function values. Case construct allows

a conditional execution of a computation. Next we discuss more on PolyMage compiler flow

41

42 5. Domain-Specific Language Extensions

and the optimizations it performs.

5.2 PolyMage Compiler flow and Optimizations

PoyMage compiler translates the PolyMage DSL specification to a high-performance opti-

mized C++ code. Figure 5.1 shows the major stages of the PolyMage compiler and various

optimizations performed by it. The blue blocks represent the existing stages whereas green

ones represent new stages that were added to the compiler.

DSL specification

Function graph,
Static bound check

Initial schedule

Code generation

Schedule transformation,
Storage optimization

Idiom recognition and
library mapping

for (...) {
// Vectors vox[] and atom[] redirects to the vectors
// Y[] and D[] respectively.

for (i in 0...N) {
// daxpy operation
Y[vox[i]] = Y[vox[i]] + D[atom[i]] * w;
}

}

for (...){

//innermost for loop replaced by BLAS-1 call
cblas_daxpy(N,Y+vox,D+atom,w);

}

Alignment,
Scaling

Mapping to
sparse operations

Optimized C++ code

Idiom recognition
 Library mapping

Figure 5.1: PolyMage compiler flow.

PolyMage front-end is a high-level description that is easy and intuitive to write. Poly-

Mage accepts this description and converts it to a directed acyclic graph (DAG). The nodes

of the DAG are Functions or Reduction operations whereas the edges represent the

producer-consumer relation among the nodes. Post this, the compiler checks the domains

of Functions used in defining the other functions. After boundary checks, an initial sched-

ule is generated that results in valid naive code for the abstract description. In the next stage,

many preliminary transformations such as alignment and scaling are performed to address the

data dependencies and make dependence vectors constant. A new schedule is generated which

is further useful to validate several other optimizations such as tiling and fusion. Next, we add

a stage to map the spare matrix operations of the LiFE algorithm to the sparse constructs of

the PolyMage DSL. We have described these constructs in the next section. Once the mapping

to sparse operations is done and a final schedule is selected, we extend the idiom recognition

5.3. New PolyMage Constructs 43

stage for BLAS-1 calls which was earlier used for mapping to BLAS-3 calls only [86]. After

this step, storage optimization and optimized C++ code generation are done.

5.3 New PolyMage Constructs

We introduce PHI Tensor construct to represent sparse decomposed tensor (Figure 2.4b) to

enhance productivity. The sparse decomposed tensor consists of four vectors: three vectors

atomPtr, voxelPtr and fiberPtr represents the dimensions of a non-zero value in

a connectome tensor (Figure 2.4a) and another vector valuesPtr to represents the actual

value of a non-zero index. We use Matrix construct already defined in the PolyMage to

represent these four vectors (Figure 5.2b). Sparse matvec construct (Figure 5.2c) is added to

perform the sparse matrix-vector multiplication y = Mw operation (Figure 2.5a) used in the

SBBNNLS algorithm of the LiFE application. We obtain a sparse decomposed matrix from

the PHI Tensor construct. Additionally the dictionary vector DPtr, the weight vector wPtr

and the demeaned diffusion signal vector YPtr are obtained as a input from the user to update

the YPtr vector. We use the Function construct to execute the Case construct defined in

the function definition based on the c1 and c2 Condition construct using the k Variable

construct. The high-level PolyMage code used to generate optimized parallelized C++ code

for the sparse matrix operation of the SBBNNLS algorithm is shown in Figure 5.2a.

44 5. Domain-Specific Language Extensions

1 def sparse_matvec():

2 C = Parameter(UInt, "nCoeffs")

3 A = Parameter(UInt, "nAtom")

4 V = Parameter(UInt, "nVoxel")

5 F = Parameter(UInt, "nFiber")

6 T = Parameter(UInt, "nTheta")

7 DPtr = Matrix(Double, "DPtr", [A,T])

8 YPtr = Matrix(Double, "YPtr", [V,T])

9 wPtr = Matrix(Double, "wPtr", [F])

10 PHI = PHI_Tensor(Double,"PHI",C)

11 YPtr = Sparse_M_w(PHI,DPtr,YPtr,wPtr)

12 YPtr = YPtr.out()

13 return [YPtr]

(a)

1 class PHI_Tensor(Function):

2 def __init__(self, _typ, _name, _dim):

3 C = _dim

4 atomPtr = Matrix(ULong, "atomsPtr", [C])

5 voxelPtr = Matrix(ULong, "voxelsPtr", [C])

6 fiberPtr = Matrix(ULong, "fibersPtr", [C])

7 valPtr = Matrix(Double, "valuesPtr", [C])

8

9 self._atomPtr = atomPtr

10 self._voxelPtr = voxelPtr

11 self._fiberPtr = fiberPtr

12 self._valPtr = valPtr

13 self._C = C

(b)

1 class Sparse_M_w(Function):

2 def __init__(self, _PHI_Node, _DPtr, _YPtr,_wPtr):

3 atomPtr = _PHI_Node.atom()

4 voxelPtr = _PHI_Node.voxel()

5 fiberPtr = _PHI_Node.fiber()

6 valPtr = _PHI_Node.vals()

7

8 C = _PHI_Node.dim()

9 T = _YPtr.dimensions[1]

10

11 k = Variable(UInt,’k’)

12 i = Variable(UInt,’i’)

13

14 r1 = Interval(UInt,0,C)

15 r2 = Interval(UInt,0,T)

16

17 c1 = Condition(k,">=",0) & Condition(k,"<",C)

18 c2 = Condition(k,">=",0) & Condition(k,"<",C) \

19 & Condition(i,">=",0) & Condition(i,"<",T)

20

21 YPtr = Reduction(([k,i],[r1,r2]),([k,i],[r1,r2]),Double,"YPtr")

22 YPtr.defn = [Case(c2, Reduce(YPtr(k,i),_YPtr(voxelPtr(k),i) \

23 + (_DPtr(atomPtr(k),i)*_wPtr(fiberPtr(k)) * valPtr(k)) ,Op.Sum))]

24 YPtr._idiom = ’daxpy’

25

26 self._YPtr = YPtr

27 def out(self):

28 return self._YPtr

(c)

Figure 5.2: (a) PolyMage code for y = Mw operation of LiFE. (b) PolyMage construct for
PHI tensor (Φ) to represent STD-based tensor. (c) PolyMage construct for y = Mw
operation of LiFE.

Chapter 6

Experimental Evaluation

In this chapter, we describe the experimental setup, followed by various code versions and

datasets we evaluated. We then present experimental results while analyzing them. We show

performance improvements we achieved by incorporating the target-independent and the target-

dependent optimizations for SpMV operations (presented in Section 4), then we compare our

highly optimized parallelized CPU implementation and our highly optimized GPU implemen-

tation with the original sequential CPU implementation, a reference optimized GPU imple-

mentation, and ReAl-LiFE’s GPU implementation. We also compare various SpMV code

implementations by varying different parameters of the dMRI datasets. Following this, we

present the comparison on error quantification of the output (based on various parameters) and

the runtime overheads.

6.1 Experimental Setup

The evaluation was performed on an NVIDIA GeForce RTX 2080 Ti GPU and a dual-socket

NUMA server with Intel Xeon Silver 4110 processor based on the Intel Skylake architec-

ture. The complete specification is provided in Table 6.1. The LiFE application is originally

written in MATLAB with the computationally intensive SpMV operations of the SBBNNLS

algorithm written in C++/CUDA-C++ language. The reference optimized code developed by

Madhav [70], ReAl-LiFE implementation [57], and our optimized GPU code are compiled

45

46 6. Experimental Evaluation

Table 6.1: Architecture details of CPU and GPU systems used for our experimental evaluation.

Microarchitecture Intel Skylake
Processors 2-socket Intel Xeon Silver 4110
Clock 2.10 GHz
Cores 16 (8 per socket)
Hyperthreading disabled
Private caches 64 KB L1 cache, 1024 KB L2 cache
Shared cache 11,264 KB L3 cache
Memory 256 GB DDR4 (2.4 GHz)
Memory bandwidth 78 GB/s (STREAM benchmark [75])

Microarchitecture (GPU) NVIDIA Turing
GPU NVIDIA GeForce RTX 2080 Ti
Multiprocessors (SMs) 64
CUDA cores (SPs) 4352
GPU Base Clock 1350 Mhz
L1 cache/shared memory 96 KB
L2 cache size 5.5 MB
Memory size 11.26 GB GDDR6
Memory bandwidth 616 GB/s

Matlab version 9.5.0.944444 (R2018b)
MRtrix version 3.0
CUDA/NVCC version 10.0
NVCC version 10.0.130
OpenBLAS 0.3.6.dev

Compiler GNU C/C++ (gcc/g++) 6.3.0
Compiler flags -O3 -ptx
OS Linux kernel 3.10.0 (64-bit) (CentOS 7)

using NVCC compiler to generate PTX code. The SpMV kernels are represented as a CUD-

AKernel object in MATLAB, which is used to invoke the compiled PTX code. The advantage

of using the CUDAKernel object is that the same data is used across the different iterations of

SBBNNLS and need not be transferred back and forth from the host to device and vice-versa.

To compare the execution time of various tractography algorithms, we use MRtrix [115] —

an advanced tool to analyze the diffusion MRI data. MRtrix generates streamline tracts for

numerous tractography algorithms.

6.2. Datasets 47

6.2 Datasets

The evaluation was performed on the STN961 dMRI dataset collected at Stanford’s Center for

Cognitive and Neurobiological Imaging [93].

DS1: dMRI data was collected at [93]. The diffusion signal was measured along the 96 di-

rections, with the spatial resolution of 1.5mm and the gradient strength of 2000s/mm2. Refer-

ing to Figure 2.3, the STN96 dMRI data for Nf=500000 was approximately 1.6GB. The mem-

ory required by matrix M (M ∈ RNθNv×Nf ; where Nv=190589, Nθ=96 and Nf=500000) for

this dataset is 67TB. However, using the STD algorithm the memory requirement was reduced

to 1.87GB (Φ tensor: 814MB; Dictionary matrix: 4MB; and other data structures such as S0).

DS2: dMRI data was same as DS1; however, we used MRtrix to generate streamline tracts

in-house for various tractography algorithms such as: deterministic algorithm (Tensor DTI)

based on 4-D diffusion-weighted imaging (DWI) [14], probabilistic algorithm based 4-D DWI

(Prob DTI) [48], fiber assigned continuous tracking (FACT) [80], fiber orientation distri-

bution (iFOD1) [115], and spherical deconvolution (SD STREAM) [115] method. There are

numerous tractography algorithms available but based on the popularity we choose these trac-

tography algorithms for our evaluation.

6.3 Results and Analysis on Multi-core System

In this sub-section, we present detailed analysis of the target-independent optimizations incor-

porated for the SpMV operations running on CPUs, followed by the evaluation of the CPU-

specific optimizations.

1https://purl.stanford.edu/rt034xr8593

48 6. Experimental Evaluation

6.3.1 Code Versions

The various SpMV code implementations that we use to analyze the performance of the

SBBNNLS algorithm on multi-cores are as follows:

• CPU-naive (Figure 2.6) is the original sequential code for the DSC and WC SpMV oper-

ations developed by Caiafa and Pestilli [94].

• CPU-naive-withBLAS is a variant of CPU-naive implementation with code fragments

replaced by an appropriate BLAS call.

• CPU-naive-par-withoutBLAS is a variant of the CPU-naive version, parallelized by

marking the outermost loop parallel though having statements with a chance of con-

flicting data accesses marked atomic. Note that the BLAS calls cannot be marked

atomic. Therefore, the BLAS calls cannot be replaced by the code fragment in Naive-

par-withoutBLAS code version.

• CPU-opt is our highly parallelized optimized C++ code implementation, which is built

upon the CPU-naive implementation with all target-independent optimizations presented

in Section 4.1 and the CPU-specific optimizations presented in the Section 4.2.1.

• CPU-opt-atomic-withoutBLAS is a variant of CPU-opt version without usage of a BLAS

call and having statements marked atomic having a chance of conflicting data dependent

accesses.

• CPU-opt-withoutBLAS is a variant of CPU-opt version without usage of a BLAS call.

6.3.2 Analysis

Table 6.2 shows the execution time in seconds for DSC and WC operations for different data

restructuring methods performed on the CPU-naive sequential implementation. In the table,

we observe that the atom-based data restructuring method is slightly better for both DSC and

WC operations. Also, the execution time of DSC and WC is similar for the different iterations

of SpMV. Thus, from this table we infer that the DPtr vector (redirected by the atomsPtr)

6.3. Results and Analysis on Multi-core System 49

captures better reuse compared to the YPtr vector (redirected by the voxelsPtr). WC oper-

ations performed using the CPU-naive implementation for different data restructuring meth-

ods. In the table, we observe that the atom-based data restructuring method is slightly better

for both DSC and WC operations. Further to this, one can observe that for the different itera-

tions of SpMV, the execution time of DSC and WC is similar. Thus, from this table we infer that

the DPtr vector (redirected by the atomsPtr) captures better reuse compared to the YPtr

vector (redirected by the voxelsPtr). The CPU-naive implementation by default uses the

atom-based data restructuring method for both DSC and WC operations.

Table 6.2: Execution time for CPU-naive implementation of the SpMV operations for various
data restructuring choices on Intel Xeon processor.

Iterations
SpMV operation

DSC WC

Atom Voxel Atom Voxel

1 8.187s 8.214s 6.320s 6.490s
100 8.490s 8.228s 6.316s 6.496s
200 8.484s 8.227s 6.315s 6.500s
300 8.465s 8.231s 6.283s 6.478s
400 8.459s 8.210s 6.286s 6.464s
500 8.452s 8.767s 6.301s 6.463s

Table 6.3 shows the execution time in seconds for DSC and WC operations for different

combinations of computations partitioning + data restructuring methods performed on CPU-

naive-par-withoutBLAS implementation (marking the outermost loop parallel and data depen-

dent statements marked atomic) running on 16-core Intel Xeon processor. For DSC operation,

we observe that the coefficient-based partitioning + voxel-based restructuring combination

performs better due to efficient usage of the parallelism provided by CPU with a low load

imbalance. In contrast, the voxel-based partitioning + voxel-based restructuring combination

does not perform well due to a high load imbalance. Note that DSC operation involves re-

duction of YPtr (with indirection from voxelsPtr); therefore, the voxel-based technique

will capture reuse twice due to read and write access, whereas the atom-based restructuring

will require usage of an atomic operation for the reduction of the irregularly accessed YPtr.

50 6. Experimental Evaluation

Table 6.3: Execution time of CPU-naive-par-withoutBLAS implementation of SpMV for dif-
ferent computation partitioning + data restructuring combinations on Intel Xeon processor.

SpMV operation

Iter(s) DSC WC

Voxel+Voxel Coeff+Voxel Voxel+Voxel Atom+Atom Coeff+Voxel Coeff+Atom

1 2.553s 2.040s 0.905s 0.957s 0.720s 0.678s
100 2.663s 1.785s 0.814s 0.904s 0.636s 0.682s
200 2.451s 1.778s 0.877s 0.955s 0.640s 0.666s
300 2.471s 1.787s 0.834s 1.001s 0.645s 0.673s
400 2.412s 1.778s 0.841s 0.905s 0.646s 0.665s
500 2.407s 1.783s 0.811s 0.907s 0.660s 0.667s

Table 6.4: Execution time of CPU-opt implementation of SpMV for different computation
partitioning + data restructuring combinations on Intel Xeon processor.

SpMV operation

Iter(s) DSC WC

Voxel+Voxel Coeff+Voxel Voxel+Voxel Atom+Atom Coeff+Voxel Coeff+Atom

1 0.534s 0.486s 0.510s 0.545s 0.482s 0.382s
100 0.147s 0.133s 0.496s 0.533s 0.442s 0.379s
200 0.124s 0.113s 0.496s 0.524s 0.432s 0.376s
300 0.126s 0.111s 0.503s 0.534s 0.428s 0.375s
400 0.139s 0.112s 0.500s 0.538s 0.446s 0.375s
500 0.122s 0.111s 0.498s 0.559s 0.426s 0.391s

Thus, due to these reasons we skip the atom-based restructuring for the DSC operation. For

WC operation, we observe that the coefficient-based partitioning + atom-based restructuring

combination performs much better compared to the other combinations. The reason for this

is that the coefficient-based partition exploits the parallelism effectively, on the other hand the

atom-based data restructuring captures the data reuse efficiently. Thus, this combination is

best for WC operation. Besides this, one can observe that the execution time of DSC and WC

is similar for the different iterations of SpMV. The reason for this is due to the CPU-naive-

par-withoutBLAS implementation performing unnecessary computations in DSC operation as

it doesn’t exploit the sparse property of the wPtr vector.

Table 6.4 shows the execution time in seconds for DSC and WC operations performed using

6.3. Results and Analysis on Multi-core System 51

CPU-opt implementation (running on 16-core Intel Xeon processor) for different computa-

tions partitioning + data restructuring combinations. We observe that for both DSC and WC,

the computation partitioning + data restructuring combination that performs best is similar

to that of CPU-naive-par-withoutBLAS implementation. However, the execution time is sig-

nificantly lower for CPU-opt SpMV operations compared to the CPU-naive-par-withoutBLAS

implementation due to the CPU-specific optimizations that we incorporated. Another interest-

ing point to observe is that the execution time of DSC reduces as the iteration increases. The

reasons for this is due the sparse property of the wPtr vector. We discuss more about it later

in this sub-section.

Figure 6.1 reports absolute execution time in seconds for different CPU code implemen-

tations of SpMV (Mw and MTy) for different iterations of the SBBNNLS algorithm. We

observe that by marking the outermost loop parallel in the Naive-par-withoutBLAS version

achieved a speedup of 4.3× over the CPU-naive version. However, it did not improve the per-

formance significantly due to following reasons: (a) poor data locality captured for YPtr

and DPtr vectors, and (b) statements marked atomic due to a chance of conflicting data

accesses. We also notice that the CPU-opt-atomic-withoutBLAS version shows comparable

performance with the Naive-par-withoutBLAS version for the same reasons (the statements

were marked atomic), though slightly better due to the improved data reuse. For the DSC

operation, we calculated the average execution time over the 500 iterations of SBBNNLS

and obtained a speedup of 12.43× for CPU-opt version over CPU-opt-atomic-withoutBLAS

version. However, after incorporating the target-independent optimizations and the efficient

synchronization-free thread mapping optimization, we not only obtained better data reuse but

were also able to mark the outermost loop parallel without the usage an atomic operation (for

the DSC operation). Overall, for complete execution of SBBNNLS we obtained a speedup of

27.25× and 6.33× for CPU-opt version over the CPU-naive and CPU-naive-par-withoutBLAS

respectively. Later in this sub-section, we will discuss more about benefit of code paralleliza-

tion of the SpMV operations of LiFE.

We also observe that mapping to a BLAS call significantly improved the performance of

both the CPU-naive and the CPU-opt versions of the DSC and WC computations. We notice

52 6. Experimental Evaluation

0 100 200 300 400 500

0

2

4

6

8

10

Iteration

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Naive
Naive-withBLAS
Naive-par-withoutBLAS
Opt-atomic-withoutBLAS
Opt-withoutBLAS
Opt

(a) Diffusion signal computation (DSC) y = Mw.

0 100 200 300 400 500

0

2

4

6

Iteration

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b) Weight computation (WC) w = MTy.

Figure 6.1: Execution time (in seconds) of SpMV used in the LiFE with various optimizations
running on Intel Xeon processor.

6.3. Results and Analysis on Multi-core System 53

0 100 200 300 400 500

107

108

109

1010

Number of iterations

CPU-opt-Inst CPU-naive-Inst
CPU-opt-CR CPU-naive-CR
CPU-opt-CM CPU-naive-CM
CPU-opt-DP-VI

(a) y = Mw

0 100 200 300 400 500

108

109

1010

Number of iterations
(b) w = MTy

Figure 6.2: Performance metrics for CPU (Inst: Instructions, CR: Cache references, CM:
Cache misses, DP-VI: Double-precision vector instructions).

54 6. Experimental Evaluation

that for the DSC operation, as the number of iteration increases, the execution time reduces

remarkably and becomes stable thereafter; the reason for this improvement is the weight vec-

tor (wPtr) becomes sparser. So when the vector wPtr is used as a scalar in the argument

of the (daxpy) BLAS call, the invocation of the call is evaded to avoid unnecessary compu-

tations. We computed the average execution time of the DSC operations over 500 iterations

and obtained a speedup of 5.5× for CPU-naive-withBLAS version over the CPU-naive ver-

sion. Similarly, we achieved a speedup of 4.81× for the CPU-opt version over the CPU-opt-

withoutBLAS version. Note that in the WC operation, the similar performance improvement

was not observed due the set of computations it involved.

Figure 6.2 shows various CPU performance metrics (using PAPI tool [113]) such as number

of cache misses (CM), cache references (CR), total number of instructions (Inst) and number

of double-precision vector instructions (DP-VI) for every 25th iteration of the SBBNNLS al-

gorithm of the SpMV operations of LiFE. Ideally, the lower the ratio of CM/CR, the lesser

will the main memory to cache memory data transfer; as a result, the execution time will be

lower. Also, conventionally, if the number of instructions are more, the number of CPU cycles

are higher, that is, higher execution time. Although, this depends on the instruction set archi-

tecture too; for example, the two instructions such as a multiply followed by an addition can

be combined to replace by a single fused multiply and add (FMA) instruction. Then in this

case, the number of instructions may reduce significantly but the CPU cycles may not reduce

significantly. In our experimental results, we also report sum of 128 bit, 256 bit and 512 bit

vector instructions; the higher number of vector instructions indicates better vectorization and

in turn better performance.

In Figure 6.2a and Figure 6.2b, we can observe that the total number of instructions for

CPU-naive code (order of 1010 magnitude) is very high compared to the CPU-opt version (or-

der of 107-108 magnitude). Similarly, the number of cache-misses and cache-references are

much higher for CPU-opt version compared to the CPU-naive version. This shows the signifi-

cant gain that we obtained from the basic compiler optimizations, data restructuring and com-

putation partitioning optimizations that we implemented. Also, in the figures, we can observe

that the number of double-precision vector instructions for CPU-opt is very high; on the other

6.3. Results and Analysis on Multi-core System 55

Table 6.5: Total execution time (in min) up till different iterations of the SBBNNLS algorithm
for a different number of cores on Intel Xeon processor. The baseline is CPU-naive version.

Code Iters Execution time (in min) Speedup

2 4 8 12 16 1 2 4 8 12 16

CPU-naive 10 5.24 5.73 3.14 1.85 1.37 1.11 1.00 0.91 1.66 2.82 3.81 4.73
100 45.1 54.5 30.1 17.9 13.1 10.5 1.00 0.82 1.49 2.51 3.42 4.29
500 225 271 149 88.6 65.6 52.2 1.00 0.82 1.51 2.53 3.42 4.30

CPU-opt 10 1.91 1.22 0.66 0.41 0.35 0.31 2.74 4.29 7.86 12.5 14.9 17.2
100 14.3 8.86 4.76 2.78 2.22 1.97 3.13 5.08 9.46 16.1 20.3 22.8
500 61.8 39.1 20.8 12.1 9.43 8.29 3.63 5.74 10.8 18.5 23.8 27.2

hand, the number of vector instructions are zero for the CPU-naive version. The reason for this

is because the compiler could not vectorize the CPU-naive code due to the presence of indirect

array accesses. However, due to the data transformations and corresponding loop transforma-

tions that we incorporated for the CPU-opt code, we were able vectorize the code using the

BLAS-1 library subroutines. Another observation that we can make out from Figure 6.2a for

DSC operation is that the number of CM, CR and the INST reduces as the number of iterations

increases. The reason behind this observation is due to the non-negativity constraint of the

SBBNNLS algorithm which induces the sparsity in the wPtr vector. These results were based

on 16 cores (16 threads). Next we will look at performance of SpMV operations with variation

in the number of threads.

Table 6.5 shows the total execution time up till different iterations of the SBBNNLS algo-

rithm and speedups achieved with different number of threads. We compare the performance

of the CPU-naive version (also used as base version) with CPU-naive-par-withoutBLAS ver-

sion and the CPU-opt version. We observe that for the Naive-par-withoutBLAS version, the

speedup remains similar for the different iterations. In addition to that, as the number of threads

increases the performance does not scale well. However, for the CPU-opt code version the per-

formance improves for different iterations of the SBBNNLS algorithm. Also it is worth noting

that the performance scales well up till 8 threads due to improved data reuse, but because of

NUMA effects does not scale further. As discussed earlier in this sub-section, mapping a code

56 6. Experimental Evaluation

fragment of the DSC operation to the BLAS call leverages the sparse nature of the wPtr vec-

tor. From Table 6.5 the same can be seen, the more the number of iteration the better is the

speedup achieved for the CPU-opt version. The CPU-naive and Naive-par-withoutBLAS code

versions does not use a BLAS call; hence, the speedup remains the same for them due to the

execution of the unnecessary computations.

Summarizing the results for CPUs, for the DSC operation we achieve optimal perfor-

mance by incorporating the voxel-based data restructuring technique. For the WC operation, we

achieve optimum performance by incorporating the atom-based data restructuring technique.

Once the data was restructured, optimizations such as loop tiling and code parallelism helped

obtaining coarse-grained parallelism. We achieved significantly better performance improve-

ment by mapping to BLAS calls for exploiting fine-grained parallelism.

6.4 Results and Analysis on GPU

In this sub-section, we present detailed analysis of the target-independent optimizations incor-

porated for the SpMV operations running on GPUs, followed by the evaluation of the GPU-

specific optimizations.

6.4.1 Code Versions

The various SpMV code implementations that we use to analyze the performance of the

SBBNNLS algorithm on GPUs are as follows:

• Ref-opt is a reference optimized GPU code developed by Madhav [70], on a similar set

of CPU optimization mentioned for the CPU-opt implementation. For the SpMV oper-

ations, the Ref-opt code reorders the data based on the atom dimension to exploit data

reuse and also uses the coefficient-based partitioning to achieve coarse-grained paral-

lelism.

• ReAl-LiFE [57] is a GPU-accelerate implementation [58] using the voxel-based data

6.4. Results and Analysis on GPU 57

restructuring and the voxel-based computation partitioning for both DSC and WC oper-

ations. In addition, the ReAl-LiFE implementations uses shared memory for DSC and

shared memory + shuffle instruction for WC operations to achieve fine-grained paral-

lelism with single-warp based execution.

• GPU-opt is our optimized GPU code implementation [10], which is built upon the Ref-

opt implementation with all the optimizations mentioned in Section 4.2.2. In contrast to

ReAl-LiFE implementation, we added following optimizations: (1) automated selection

of the data restructuring + computation partitioning combination at run-time, (2) utilized

only shuffle instruction to exploit fine-grained parallelism for WC, (3) scheduled multiple

computations to a thread block, and (4) exploited the sparse property of the wPtr vector.

6.4.2 Analysis

Table 6.6 reports the execution time in seconds for DSC and WC operations at different itera-

tions of SBBNNLS for various data restructuring techniques discussed in Section 4.1.2. Eval-

uation was performed on the Ref-opt + data-restructure code — a modification of the Ref-opt

GPU code obtained by incorporating the data restructuring optimization. We observe that the

performance of the atom-based data restructuring is surprisingly better than the voxel-based

data restructuring for the DSC computation. The reason for this is that the voxel-based ap-

proach achieve good data reuse; however, due to the usage of an atomic operation the overhead

is high. Though, later in this sub-section, we will discern that when other optimizations are

incorporated, the voxel-based data restructuring technique outruns the atom-based technique.

In the case of WC, we observe that the atom-based and voxel-based restructuring techniques

achieve a similar order of performance because the data reuse is obtained either for the YPtr

vector or the DPtr vector.

Table 6.7 shows the execution time in seconds for DSC and WC operations performed us-

ing Ref-opt implementation for different combinations of computations partitioning + data

restructuring methods. For DSC operation, we observe that the voxel-based partitioning +

58 6. Experimental Evaluation

Table 6.6: Execution time of Ref-opt implementation of the SpMV operations for various data
restructuring choices on NVIDIA GPU.

Iterations
SpMV operation

DSC WC

Atom Voxel Atom Voxel

1 1.025s 2.087s 0.310s 0.311s
100 0.185s 0.219s 0.316s 0.320s
200 0.166s 0.190s 0.319s 0.320s
300 0.162s 0.187s 0.319s 0.320s
400 0.162s 0.186s 0.319s 0.320s
500 0.162s 0.186s 0.319s 0.320s

Table 6.7: Execution time of Ref-opt implementation of the SpMV operations for different
computation partitioning + data restructuring combinations on NVIDIA GPU.

SpMV operation

Iter(s) DSC WC

Voxel+Voxel Coeff+Voxel Voxel+Voxel Atom+Atom Coeff+Voxel Coeff+Atom

1 0.318s 1.025s 0.311s 0.313s 0.188s 0.122s
100 0.057s 0.185s 0.318s 0.320s 0.184s 0.121s
200 0.053s 0.166s 0.321s 0.320s 0.184s 0.121s
300 0.052s 0.162s 0.321s 0.320s 0.184s 0.121s
400 0.052s 0.162s 0.321s 0.320s 0.182s 0.121s
500 0.052s 0.162s 0.322s 0.320s 0.184s 0.120s

voxel-based restructuring combination performs better compared to the coefficient-based par-

titioning + voxel-based restructuring. As discussed earlier in Section 4.1.3, the reason for this

is that the load imbalance issue on GPUs caused due to partitioning based on voxel dimen-

sion is low considering its massive parallelism. Additionally, the number of iterations of the

outermost loop (Nc) is much larger than maximum possible thread blocks that can be sched-

uled to a GPU. Hence, this combination performs good for DSC operation. In contrast to that,

the coefficient-based partitioning performs poorly because of the reduction of the YPtr has

dependent accesses at runtime; therefore, this partitioning method have a high synchroniza-

tion overhead due to the usage of an atomic operation to avoid data races. For WC operation,

6.4. Results and Analysis on GPU 59

Table 6.8: Execution time of the GPU-opt implementation of the SpMV operations for differ-
ent computation partitioning + data restructuring combinations on NVIDIA GPU.

SpMV operation

Iter(s) DSC WC

Voxel+Voxel Coeff+Voxel Voxel+Voxel Atom+Atom Coeff+Voxel Coeff+Atom

1 0.041s 2.431s 0.074s 0.069s 0.049s 0.057s
100 0.017s 0.141s 0.064s 0.065s 0.047s 0.044s
200 0.015s 0.094s 0.064s 0.064s 0.047s 0.044s
300 0.015s 0.089s 0.064s 0.065s 0.047s 0.044s
400 0.015s 0.089s 0.064s 0.065s 0.047s 0.044s
500 0.015s 0.089s 0.065s 0.065s 0.047s 0.044s

the combination of coefficient-based partitioning + atom-based restructuring performs best

compared to others. The reason for this is that the coefficient-based partitioning exploits par-

allelism of GPUs effectively, on the other hand atom-based data restructuring leverages data

reuse efficiently. Also, one can observe that the execution time for both DSC and WC operations

are same for different iterations of SBBNNLS; therefore, the sparse property of wPtr is not

exploited efficiently by different combinations of computations partitioning + data restructur-

ing methods in Ref-opt implementation.

Table 6.8 shows the execution time in seconds for DSC and WC operations performed us-

ing GPU-opt implementation for different combinations of computations partitioning + data

restructuring methods. We observe that for both DSC and WC, the computation partitioning

+ data restructuring combination that performs best is similar to that of Ref-opt implemen-

tation. However, the execution time is significantly lower for GPU-opt compared to Ref-opt

implementation due to the GPU-specific optimizations we incorporated. Additionally, one can

observe that the execution time of DSC reduces as the iteration increases due to the sparse

property of wPtr vector (discussed in Section 2.4).

Figure 6.3 presents the execution time for different optimizations we incorporated in an

incremental way for every 25th iteration of the SpMV operation. The benefits of the data

restructuring optimization and effective partitioning of the computations per thread block are

evident in Figure 6.3. We calculated the average execution time of 500 iterations of SBBNNLS

60 6. Experimental Evaluation

to compare performance. We obtained speedups of 2.11× and 1.81× for the Naive + data-

restructuring + computation-partition optimization over the Ref-opt GPU code of the DSC and

WC operations respectively.

In Figure 4.3, the innermost loop is executed sequentially performing the daxpy operation

and the dot-product operation for the DSC and WC computations respectively. Parallelizing

the innermost loop with minimized synchronization was a major source of performance im-

provement for the SpMV operations. We obtained speedups of 2× and 1.06× for the DSC and

WC computations respectively over the Naive + data-restructuring + computation-partition

code by exploiting the fine-grained parallelism (Section 4.2.2.2). In addition, we obtained

significant speedups of 2.28× and 1.62× for DSC and WC respectively when we incorporated

the single warp-based thread block optimization (Section 4.2.2.3). Furthermore, when each

thread block handled additional computations by allocating multiple atoms, coefficients, or

voxels per thread block (Section 4.2.2.4), we obtained speedups of 1.06× and 1.29× over the

single-warp based approach for the DSC and WC computations respectively. The reason for the

improvement is that we obtained reduced synchronization overheads and additional data reuse

in shared memory for the YPtr and DPtr vectors.

We obtained an additional performance improvement of 8% when we performed loop un-

rolling for the DSC operation. However, the same was not observed for the WC operation. The

loop trip count is not statically known in the case of DSC, and the compiler’s heuristic perhaps

chose not to unroll it. However, the innermost loop trip count for WC was statically known, and

our unrolling there did not improve performance.

Figure 6.4 shows various GPU performance metrics (using NVIDIA Nsight Compute

tool [5]) such as shared memory (S-Mem) throughput and global load (GLD) efficiency for

every 25th iteration of the SBBNNLS algorithm of the SpMV operations of LiFE. S-Mem

throughput is the rate at which data is loaded into the shared memory. The higher throughput

indicates better utilization of the shared memory and in turn shows better data reuse. GLD

efficiency is the number of global load transactions per request done by a warp of GPU. The

lower the GLD efficiency, the better it is, the ideal efficiency is 1. If the GLD efficiency is 1

then it implies that it requires 1 global load transaction for a single request of a warp, that is,

6.4. Results and Analysis on GPU 61

0 100 200 300 400 500
101

102

103

Iteration

E
xe

cu
tio

n
tim

e
(m

s)
Ref-opt GPU code

�

+ data-restructure+partitioning

�

+ fine-grained-parallelism

�

+ single-warp-based-execution

�

+ multiple-computation/thread-block

�

+ loop-unroll

(a) Diffusion signal computation (DSC) y = Mw.

0 100 200 300 400 500
101.6

101.8

102

102.2

Iteration

E
xe

cu
tio

n
tim

e
(m

s)

(b) Weight computation (WC) w = MTy.

Figure 6.3: Execution time (in ms) for every 25th iteration of the SpMV operations with various
optimizations on NVIDIA GPU.

62 6. Experimental Evaluation

S-Mem Throughput (GBps) GLD efficiency (Ideal: 1)

2

4

6

8

10

4.
5

1

8.
8

1
.3

6

3.
3

1
.9

8

4.
05

1
.9

8

6.
34

1
.9

8
Ref-opt d-r + p f-g-p s-w-b-e mc-tb GPU-opt

(a) y = Mw

S-Mem Throughput (GBps) GLD efficiency (Ideal: 1)

5

10

15

1
5.

7
1

8.
8

3
.84.
1 4
.85.

9

4
.85.

7

4
.8

Ref-opt d-r + p f-g-p s-w-b-e mc-tb GPU-opt
(b) w = MTy.

Figure 6.4: Performance metrics for GPU (S-Mem: Shared memory, GLD: Global load).

6.5. Performance Analysis based on various parameters of LiFE 63

the memory access is fully coalesced. On the other hand, if it is 32, then the memory access is

fully uncoalesced.

In Figure 6.4, we can observe that the GLD efficiency of Ref-opt is very high compared to

the Ref-opt + data restructuring + computation partitioning. The reason for this difference is

the data restructuring and computation partitioning optimizations that we incorporated. Due

to these optimizations, we obtained fully coalesced memory accesses. However, once we did

further optimizations and scheduled multiple computations to a thread block, then the GLD

efficiency increased slightly. This increase was a necessary trade-off to utilize the parallelism

optimally that was provided by the GPU. Apart from this observation, in Figure 6.4, we can

spot that the S-Mem throughput is high when we exploited fine-grained parallelism in SpMV

operation by utilizing the shared memory for the DSC operation and the shuffle instruction for

the WC operation. In Figure 6.3, we can notice that when we incorporated loop unrolling for

DSC operation and obtained a slight gain in its performance, whereas for WC operation there

was a slight loss. This observation can be confirmed from the S-Mem efficiency metric. The S-

Mem efficiency increase from 4.05 to 6.34 for DSC operation, whereas it decreases from 5.9 to

5.7 for WC operations. Hence, these two performance metrics shows how GPU-opt improved

performance over Ref-opt.

Summarizing the results, for the DSC operation, we achieve the best performance by using

the voxel-based restructuring and the voxel-based computation partitioning technique, and

through a fine-grained parallelization while utilizing shared memory. For the WC operation,

we achieve the best performance by using the atom-based restructuring and the coefficient-

based partitioning, and by extracting fine-grained parallelism using the shuffle instruction.

Additionally, we obtained performance improvements for both the DSC and WC operations by

incorporating GPU-specific optimizations such as usage of a single warp per thread block and

scheduling multiple computations per thread block.

64 6. Experimental Evaluation

Table 6.9: Execution time (in minutes) of the SBBNNLS algorithm for various tractography
algorithms using STN96 dMRI data (with Nθ = 96).

Fascicles Tractography Voxels Φ size CPU-naive CPU-opt Ref-opt GPU-opt

50000

DET 151414 510.0 MB 16.8min 1.17min 0.555min 0.146min
PROB 162499 522.9 MB 20.7min 1.71min 0.972min 0.157min
iFOD1 212874 726.7 MB 49.7min 2.93min 1.595min 0.331min
SD STREAM 195066 497.2 MB 12.9min 1.13min 0.535min 0.118min
FACT 138860 372.8 MB 7.10min 0.68min 0.319min 0.084min

100000

DET 161443 688.1 MB 30.3min 1.76min 1.102min 0.232min
PROB 173685 692.8 MB 40.9min 2.16min 1.428min 0.244min
iFOD1 231586 1.020 GB 1h47min 5.03min 2.722min 0.557min
SD STREAM 217742 617.9 MB 24.3min 1.61min 0.764min 0.170min
FACT 161120 457.2 MB 13.2min 1.00min 0.506min 0.117min

150000

DET 165843 858.8 MB 45.8min 2.32min 1.391min 0.310min
PROB 178984 851.6 MB 50.1min 2.81min 1.830min 0.318min
iFOD1 239522 1.321 GB 2h27min 7.53min 3.631min 0.747min
SD STREAM 227416 721.1 MB 35.8min 2.12min 0.930min 0.216min
FACT 171782 520.8 MB 19.4min 1.33min 0.641min 0.130min

200000

DET 168608 1.001 GB 59.0min 2.71min 1.644min 0.387min
PROB 182302 1006 MB 1h19min 4.21min 2.232min 0.396min
iFOD1 244265 1.611 GB 3h20min 9.27min 4.345min 0.950min
SD STREAM 233403 818.5 MB 47.1min 2.49min 1.124min 0.262min
FACT 178779 579.0 MB 25.4min 1.51min 0.720min 0.156min

250000

DET 170403 1.171 GB 1h14min 3.37min 1.852min 0.459min
PROB 184613 1.132 GB 1h56min 4.82min 2.616min 0.471min
iFOD1 247356 1.905 GB 4h09min 10.9min 5.798min 1.202min
SD STREAM 237399 915.4 MB 58.8min 2.94min 1.288min 0.304min
FACT 183885 633.8 MB 31.7min 1.83min 0.812min 0.190min

500000

DET 175351 1.970 GB 2h42min 5.76min 3.039min 0.829min
PROB 190589 1.871 GB 3h52min 8.71min 4.485min 0.859min
iFOD1 255309 3.362 GB 6h05min 21.1min 9.009min 2.155min
SD STREAM 247291 888.7 MB 1h56min 4.85min 2.070min 0.528min
FACT 197299 1.024 GB 1h02min 3.08min 1.249min 0.301min

6.5. Performance Analysis based on various parameters of LiFE 65

6.5 Performance Analysis based on various parameters of

LiFE

Table 6.9 shows absolute execution time of CPU-naive, CPU-opt, Ref-opt and GPU-opt im-

plementations of SpMV operation used in SBBNNLS for different parameters of the LiFE

such as number of fibers and voxels, and various tractography algorithms on the DS2 dataset.

As discussed in Section 2.4, the wPtr vector becomes sparser as it is updated after every iter-

ation of SBBNNLS, and also as the number of fascicles and the number of voxels increases.

Consequently, sparser the vector, higher the number of unnecessary computations. Thus, we

obtained additional reduction in execution time due to the sparse property of wPtr. This is ev-

ident from Table 6.9 for various tractography algorithms. We also observe that as the number

of voxels increases, the size of the demeaned diffusion signal vector (YPtr) and the execution

time of the SBBNNLS algorithm also increases. If we consider different tractography algo-

rithms mentioned in the table for the different number of fascicles, the total time to prune the

connectome takes approximately 44 hours for CPU-naive code version, and took 2 hours for

the CPU-opt code version, that is, an overall speedup of 22×. Similarly, for the GPU imple-

mentations, it took 13.26 minutes for GPU-opt code version, and took 61.2 minutes for the

Ref-opt GPU code version, that is, an overall speedup of 4.6×.

Usually, the LiFE application apart from generating the optimized connectome for a sin-

gle tractography algorithm, it also generates optimized connectomes for various tractography

algorithms and the number of fascicles to compare them. The optimizations we discussed in

Section 4 can be extended to several tractography algorithms that are used to compute the op-

timized connectome. In addition to that, the voxel size for the datasets we used was 1.5-2 mm;

however, if the voxel size is reduced to half, the memory consumption for a connectome ma-

trix may increase up to 8×. For high-resolution DWI datasets, the voxel size may be as low

as 0.1 mm [109], hence the memory utilization for connectome matrices generated from these

datasets can scale to an order of PBs.

66 6. Experimental Evaluation

Table 6.10: Execution time (in minutes) up till different iterations of the SBBNNLS for various
code implementations running on CPU and GPU.

Iter(s)
Execution time (minutes) Speedup over

CPU-
naive

CPU-
opt

Ref-
opt

ReAl-
LiFE

GPU-
opt

CPU-
naive

CPU-
opt

Ref-
opt

ReAl-
LiFE

GPU-
opt

10 5.241 0.304 0.421 0.035 0.025 1.0 17.24 12.48 150.60 209.64
100 45.07 1.978 1.344 0.318 0.186 1.0 22.79 33.54 141.41 242.35
500 224.8 8.294 4.393 1.603 0.855 1.0 27.12 51.21 140.23 263.06

6.6 Execution Time Comparison of different Code Imple-

mentations

In Table 6.10, we compare execution time in minutes for various code implementations of the

SpMV operations up till different iterations of SBBNNLS on CPU and GPU systems. We

observe that our CPU-opt implementation achieves an overall speedup of 27.12× over the

CPU-naive implementation. This improvement is due to the optimizations discussed in Sec-

tion 4.1 and Section 4.2.1, our appraoch exploited better parallelisms and data access patterns

to reduce the memory bandwidth usage. Additionally, one can observe that the speedup im-

proves as the number of iterations increases; the reason for this is due to the non-negativity

constraint (exploited by wPtr) in SBBNNLS.

The speedup that our GPU-opt implementation obtains over the Ref-opt implementation

is due to the optimizations discussed in Section 4.2.2 that helped to obtain better data reuse,

exploit fine-grained parallelization, and minimize synchronization. In addition to this, the

speedups we obtain over the ReAl-LiFE implementations are due to the following reasons.

(a) The ReAl-LiFE implementation does not exploit the sparsity of wPtr for the DSC opera-

tion. This can be observed from Table 6.10, where the speedups for ReAl-LiFE reduce when

varying the number of iterations. In contrast, for our GPU-opt implementation, the achieved

performance improves significantly as we increase the number of iterations. As a result of

this, our GPU-opt implementation obtained an additional speedup of 2.51× for an average

6.6. Execution Time Comparison of different Code Implementations 67

execution of 500 iterations of DSC. (b) For data restructuring, the best computation partition-

ing + data restructuring choice depends on the dataset. Using a fixed choice could result

in a loss of performance. Therefore, our selection is an automatic one that dynamically (at

runtime) determines the best partitioning choice by analyzing the performance of each restruc-

turing combination for the given dataset. ReAl-LiFE implementations on the other hand use

the voxel-based computation partitioning + voxel-based data restructuring combination by

default for both the SpMV operations. However, our implementation achieves the best perfor-

mance by selecting the voxel-based computation partitioning + voxel-based data restructuring

combination for DSC and a coefficient-based computation partitioning + atom-based data re-

structuring combination for the WC. If we use the combination used by ReAl-LiFE, then GPU-

opt’s performance drops by 17% over our proposed combination for SBBNNLS. (c) We also

schedule multiple computations to a thread block to enhance data reuse and reduce synchro-

nization (Section 4.2.2.4). This optimization was not incorporated by ReAl-LiFE, but when

incorporated for GPU-opt, it improved the overall performance by 1.05× and 1.29× for DSC

and WC operations respectively. (d) To obtain fine-grained parallelism for the WC operation,

ReAl-LiFE uses the shuffle instruction + shared memory, whereas we only used the shuffle

instruction. This optimization helped reduce the consumption of shared memory; however, in

terms of performance, it did not make an impact. (e) The ReAl-LiFE approach uses the sync-

thread barrier, while we used a much less expensive syncwarp operation. Usage of syncwarp

would not help improve performance for the ReAl-LiFE implementation because it doesn’t

incorporate the optimization associated with multiple computations per thread block. On the

other hand, if we use the syncthread barrier for our implementation, our performance drops by

10%.

Thus, our approach not only leverages best aspects of both the Ref-opt and the ReAl-LiFE

implementations but also complements them by taking advantage of new optimizations. As a

result of all of these optimizations, the GPU-opt implementation achieves significant speedups

of 5.2× and 1.87× over the Ref-opt and ReAl-LiFE implementations respectively.

68 6. Experimental Evaluation

Table 6.11: Error quantification and overhead comparison of final output of SpMV operations
for various code implementations running on CPU and GPU.

Code versions RMSE Summed weight NNZ Overhead

CPU-naive 42.496191 2077.634727 106063 0.000min
CPU-opt 42.496192 2077.634112 106062 0.072min
Ref-opt 40.504819 2077.645021 106064 0.078min
ReAl-LiFE 40.504843 2077.641045 106066 0.132min
GPU-opt 42.496188 2077.634941 106065 0.122min

6.7 Error Quantification and Overhead Comparison of dif-

ferent Code Implementations

Table 6.11 reports error quantification on various parameters such as root-mean squared error

(RMSE) between measured and predicted diffusion signal, summed weight of wPtr vector

after 500 iterations of SBBNNLS, and the number of non-negative (NNZ) values (or in other

words number of fascicles retained in optimized connectome). In addition to that, we com-

pare the overhead of various code implementations of SpMV used in LiFE. In the table, we

observe that different implementations have a minute difference over each other due to dou-

ble precision rounding error. The overhead for CPU-naive is zero as it does not incorporate

any optimization, whereas the overhead for CPU-naive and Ref-opt implementations is due to

the data restructuring optimization. On the other hand, ReAl-LiFE and GPU-opt implementa-

tions involve a little higher overhead due to the additional time required for incorporating the

computation partitioning optimization.

Chapter 7

Related Work

In this chapter, we discuss prior work on optimizing the compute-intensive sparse matrix vector

(SpMV) operations of the LiFE application. Next, we discuss various approaches proposed to

tackle indirect array accesses and obtain performance improvement in their presence for CPUs.

We also discuss various sparse formats and optimization techniques proposed to enhance the

performance of SpMV for GPUs.

7.1 Optimizing SpMV operations of the LiFE algorithm

In this section, we discuss existing implementations to optimize the SpMV operations of the

LiFE application on various architectures.

Madhav’s GPU Implementation: Madhav [70] developed a GPU implementation for the

compute-intensive matrix operations of LiFE. Madhav by default performs the atom-based data

restructuring (discussed in Section 4.1.2) to exploit data reuse and uses the coefficient-based

partitioning (discussed in Section 4.1.3) to achieve coarse-grained parallelism. In addition to

this, Madhav’s GPU implementation exploits the sparse property of the wPtr vector to avoid

unnecessary operations to further improve the performance. However, the data restructuring

+ computation partitioning choice used in this implementation requires an atomic operation

to avoid data races (which leads to synchronization across the thread blocks of a GPU); hence,

69

70 7. Related Work

this results in significant drop in performance. Our optimized GPU implementation is built

upon it and additionally performs other optimizations discussed in Section 4.2.2 to obtain a

speedup of 5.2× over it.

ReAl-LiFE: Kumar et al. [57] presented ReAl-LiFE algorithm, a modification of the LiFE

algorithm introducing an additional regularized constraint to prune connectomes. This work

also presents a GPU implementation of LiFE’s SpMV operations. Our GPU implementation

obtains a speedup of 1.87× over the ReAl-LiFE implementation due to the following differ-

ences.

1. The best computation partitioning + data restructuring choice depends on the dataset.

Using a fixed choice could result in a loss of performance. Therefore, our selection is an

automatic one that dynamically (at runtime) determines the best partitioning choice by

analyzing the performance of each restructuring combination for the given dataset. ReAl-

LiFE implementations on the other hand use the voxel-based computation partitioning

+ voxel-based data restructuring combination by default for both the SpMV operations.

However, our GPU implementation achieves the best performance by selects a different

choice for different SpMV operation (discussed in Section 6.6). If we use the combina-

tion used by ReAl-LiFE, then the performance of our GPU approach drops by 17% over

our proposed combination for SBBNNLS.

2. To exploit fine-grained parallelism for the WC operation, ReAl-LiFE uses the shuffle in-

struction + shared memory, whereas we only used the shuffle instruction. This optimiza-

tion helped reduce the utilization of shared memory; however, it did not make an impact

in terms of performance.

3. We also schedule multiple computations to a thread block to efficiently utilize the GPU

resources (Section 4.2.2.4). This optimization was not implemented by ReAl-LiFE, but

when incorporated for our GPU approach, it improved the overall performance by 1.05×

and 1.29× respectively for DSC and WC operations.

7.1. Optimizing SpMV operations of the LiFE algorithm 71

4. ReAl-LiFE approach uses the syncthread barrier, while we utilized syncwarp barrier, a

much less expensive operation. For the ReAl-LiFE implementation, usage of syncwarp

would not help improve performance because it doesn’t incorporate the optimization

associated with multiple computations per thread block. On the other hand, if we utilize

the syncthread barrier for our implementation, our performance drops by 10%.

5. For DSC operation, ReAl-LiFE does not leverage the sparsity of wPtr. This can be ob-

served from Table 6.10, where the speedups for ReAl-LiFE reduce with increase in itera-

tions. In contrast, for our GPU implementation, the performance improves significantly

as we increase the number of iterations. As a result of this, our GPU implementation

obtained an additional speedup of 2.51× for an average execution of 500 iterations of

DSC.

Thus, our GPU implementation is a comprehensive one that subsumes all the optimiza-

tions of Madhav’s and ReAl-LiFE’s implementations with an additional set of optimizations

to further improve the performance of the SpMV operations of LiFE.

MPI-LiFE: Gugnani et al. [44] presented a distributed memory based design to parallelize

the multiplication of large but sparse N-dimension arrays for the LiFE algorithm. Using the

MPI and OpenMP programming models, the authors used MPI-based and MPI+OpenMP-

based LiFE designs, collectively named as MPI-LIFE, to accelerate the SpMV operations of

the LiFE model. On a single node (KNL-based), the MPI-LiFE model achieved a speedup

of 8.7×, and on multiple nodes (16 Intel Xeon SandyBridge-based ones), a speedup of 8.1×,

over the original CPU version. The problem of irregular accesses becomes more prominent

with multiple nodes, as the performance of MPI-LiFE could not scale due to memory latency

and bandwidth bottlenecks. The MPI-LiFE code was not publicly available, and so we could

not evaluate it as a reference.

72 7. Related Work

7.2 Optimizing Irregular Applications using Inspector/Ex-

ecutor Paradigm

Code optimization and transformation frameworks have been studied well in the literature for

improving data locality and parallelism for regular or affine array references [69, 39, 101, 64,

24, 52, 55, 129, 49, 30, 114, 99]. Among many frameworks, the polyhedral framework is

popular for optimization of affine loop nests [38, 31, 19, 122]. However, most of the literature

on the polyhedral framework is inapplicable to the code with non-affine accesses.

In literature, significant prior work has been proposed to support non-affine accesses by ex-

tending the polyhedral framework [121, 119, 120, 108]. New representations [16, 17, 67, 76,

126, 128, 103], transformations [119, 130, 78, 36, 46] and code generation frameworks [121,

108] have been proposed to achieve the performance similar to hand-tuned library versions

[12, 17, 21, 76, 124]. As discussed earlier, indirect array accesses cannot be analyzed precisely

at compile time. Therefore, most prior work incorporated an inspector/executor approach to

tackle this issue. The inspector analyzes the code and collects the non-affine access informa-

tion and executor uses this information to generate the code.

Venkat et al. [121] based on the inspector/executor paradigm extended polyhedral code

generation to support irregular array accesses in loop bounds and references. The non-affine

accesses were represented using uninterpreted functions [100] and supported loop coalesc-

ing. The work targeted code generation for GPUs involving sparse matrix-vector multiplica-

tion operation and achieved comparable performance to hand-tuned CUSP library. Venkat et

al. [119] work extended [121] by introducing three new compiler transformations to represent

and transform sparse matrix computations. The work generated optimized code for the sparse

representations and targeted reduction in runtime overhead. Both the works were restricted to

non-affine read-only accesses for sparse matrix computations. Whereas, our approach uses an

custom approach to obtain data reuse and is able to handle multiple read and write non-affine

array accesses with a much lower overhead than the proposed works. Our approach is special-

ized and can be used for STD-based sparse matrix operations and representations. However,

targeting optimization of different sparse representation is not the target of this thesis and can

7.3. Optimizing SpMV operations for CPUs and GPUs 73

be future work.

Furthermore, in another work presented by Venkat et al. [120] demonstrates parallelized

code generation for sparse matrix applications such as ILU factorization and Gauss-Seidel re-

laxation, having loop-carried dependences. The proposed work is specialized to automatically

generate the runtime inspector and executor to achieve wavefront parallelization; exploiting

fine-grained parallelism by parallelizing within the wavefront and synchronizing (by using

OpenMP barriers) across the wavefronts, hence, introducing pipelined-startup stalls and syn-

chronization overhead across the wavefronts. However, our work to parallelize the sparse code

is specialized to specific structure and sparsity of matrices used in the LIFE algorithm that

not only exploits coarse-grained parallelism (marking outermost-loop parallel using OpenMP)

without synchronization but also utilizes the fine-grained parallelism (utilizing vectorization

by usage of a BLAS call).

Strout et al. [108] develops a ”sparse polyhedral framework” (SPF), a code generation ap-

proach to utilize data locality in applications involving non-affine array index and loop bounds.

SPF specifies runtime reordering transformations and algorithms to automatically generate in-

spector/executor code to implement these transformations. The generated code competes with

hand-optimized ones but requires additional time for representation, inspection, transformation

and executor code generation. The time required by an inspector is amortized over different

iterations of the program. However, our inspector approach utilizes both data locality and

parallelism, though, limited to single level indirect array access (i.e. A[B[i]]). In addition,

our approach presents a specific inspector model utilizing data reordering transformation and

doesn’t require an additional overhead of code generation. Moreover, our approach signifi-

cantly reduces the time required by the inspector by amortizing it over different runs of the

program as seen in the SBBNNLS algorithm of the LiFE algorithm.

7.3 Optimizing SpMV operations for CPUs and GPUs

SpMV is a widely used kernel operation for a large number of applications. A number of sparse

representations [37, 18, 131, 71] have been proposed to avoid unnecessary computations and

74 7. Related Work

tackle the memory bottleneck. Based on the sparse representation technique used, the memory

accesses may vary from moderately regular to highly irregular ones, posing a challenging prob-

lem. Exploiting the massive parallelism and multi-threaded processing power of architectures

such as GPUs makes the challenge even more tougher due to the load imbalance issue and a dif-

ferent multi-level memory hierarchy when compared to CPUs. Many prior works introduced

new storage formats [67, 16, 17] and various optimization techniques [76, 118, 43, 28, 125, 34]

to address this challenge.

One of the earliest works to optimize SpMV kernel for GPUs was of [13]. They addressed

two key aspects involved in optimizing SpMV for GPUs: thread mapping and data access

strategies for compressed sparse row (CSR) format. They presented various optimization tech-

niques such as exploiting synchronization-free parallelism, optimized thread-mapping, and

optimized off-chip memory access to improve performance of SpMV. In another work to op-

timize SpMV, [17] incorporated specific optimization techniques to exploit regularity patterns

for different sparse representation techniques such as DIA, ELL, COO and CSR formats. Fur-

ther, they presented a new sparse matrix representation named — “Hybrid”, to improve the

performance of SpMV.

Prior works on optimizing SpMV have focused on techniques tailored for a specific sparse

representation to exploit structure in irregular accesses. However, there are a large class of

problems involving large matrices that are better solved using a tensor decomposition approach

to reduce memory requirements. Low-rank Sparse Tucker Decomposition (STD) is one such

popular tensor decomposition technique used for numerous applications performing matrix

operations. The sparse representations may involve multiple indirect array accesses, making

the problem hard; however, this is a necessary trade-off considering the reduction obtained in

memory requirement.

7.4. Optimizing tensor operations for CPUs and GPUs 75

7.4 Optimizing tensor operations for CPUs and GPUs

Tensor and its various decomposition techniques (such as CP decomposition, Tucker, Kro-

necker Product, Khatri-Rao product, and more) have been popular to solve problems in vari-

ous fields such as signal processing, linear algebra, neuroscience, computer vision, data mining

and many others. Hence, due to its high demand and popularity, it has been well studied in

the literature. The LiFE algorithm is one such computational neuroscience algorithm that has

benefited by using a tensor decomposition technique, namely, low-rank sparse Tucker decom-

position model.

The LiFE algorithm primarily involves two steps, (1) conversion of dMRI data to structural

connectivity matrix, and (2) conversion of structural connectivity matrix to connectome matrix.

Further, this matrix is used in SpMV operations to compute the final output. However, the

challenge is that this matrix is very large but sparse. It cannot be stored in any existing memory

system. Hence, the authors used Tucker format to represent this sparse matrix. This was

the third and important step of LiFE algorithm. In addition to this, the authors smartly used

the domain information to directly convert the structural connectivity matrix to the sparse

decomposed Tucker format. In this way, instead of performing the simple SpMV operation,

a much complex sparse tensor and dense vector operation was performed. This operation

introduced its own challenges such as irregular access, limitation to parallelize the code and

many other such challenges.

In literature, a number of prior work been done to optimize such similar operations such

as [62, 66, 63, 105] and more. Most of these works have focused on the dense and sparse

tensor-matrix operation. However, no prior have explored on sparse tensor and dense vector

operation. In this work, we take this kind of operation into account. A number of optimiza-

tions have been part of the prior works such as code parallelization in [96, 87], data restruc-

turing in [106], and atomic operation in [96]. However, the sequence of optimization we have

performed have never been explored before. Using this sequence we obtained a significant

speedup for LiFE algorithm and are certain that with slight tweaks it can help other decompo-

sition techniques such as CP, Kronker Product and in turn, a number of applications that are

solved using these decomposition techniques.

76 7. Related Work

Other works on optimizing GPU applications performing SpMV operations using the Tucker

decomposition have focused on the dense matrix operations [27, 25], or a distributed memory

system based STD approach targeting tensor-times-matrix operation [51, 25, 26, 91]. In con-

trast, we proposed several optimization techniques for the STD-based SpMV operations used

in LiFE. Our data restructuring and computation partitioning optimizations could potentially

be generalized and extended to other applications employing STD, although one would have

to look for similar or other data patterns. Furthermore, other alternatives to STD such as Kro-

necker Product and CANDECOMP/PARAFAC methods could also potentially benefit from

our optimizations.

Chapter 8

Conclusions and Future Work

8.1 Summary

We addressed challenges involved in optimizing the SpMV operations for large matrices in

conjunction with a popular tensor decomposition technique, namely, Sparse Tucker Decom-

position (STD). The matrices when represented using the STD technique involved several

indirect accesses and exhibited poor performance. LiFE algorithm is a popular neuroscience

application in which large-sparse matrices are represented using STD. Once these matrices

were decomposed to a sparse-tensor format, the SpMV operations of LiFE were transformed

into a complex sequence of operations, involving multiple indirect accesses.

First of all, we proposed target-independent optimization techniques to optimize matrix

operations of LiFE such as: (1) standard compiler optimizations to avoid redundant com-

putations, (2) a custom data restructuring technique to exploit data reuse and minimize the

downsides of irregular accesses; this optimization in turn made other optimizations valid and

fruitful, and (3) methods to partition computation among threads to exploit coarse-grained

parallelism while reducing synchronization overhead. Then we presented target-specific opti-

mizations for CPU and GPU systems. The CPU-specific optimizations that we incorporated

77

78 8. Conclusions and Future Work

includes efficient synchronization-free thread scheduling and mapping appropriate code frag-

ments to a BLAS call in the SpMV operations. Our highly optimized parallel CPU implemen-

tation utilized the target-independent optimizations and tailored these CPU-specific optimiza-

tions for LiFE application to obtain a speedup of 27.12× over the original sequential CPU

approach (running on 16 core Intel Xeon Silver system). We also extend the PolyMage DSL

to automatically generate an optimized CPU code for the SpMV operations of the LiFE as a

proof-of-concept. Next, we presented GPU-specific optimizations such as: (1) exploiting fine-

grained parallelism by utilizing shared memory and the shuffle instruction, (2) map multiple

computations to a single thread block to exploit additional data reuse, and (3) transform loops

to minimize synchronization. We utilized target-independent optimizations and tailored these

GPU-specific optimizations to optimize the SpMV operations of the LiFE application, which

when executed on an NVIDIA’s GeForce RTX 2080 Ti GPU, achieved speedups of 5.2× and

1.87× respectively over an existing optimized GPU implementation and over the ReAl-LiFE

implementation.

8.2 Future Work

Some of the future works are listed below.

• We plan an end-to-end optimized implementation of all the steps involved in the LiFE.

For example generating the sparse connectome tensor from the structural connectivity

matrix.

• We plan to incorporate the optimizations presented by us in Section 4 to optimize various

other computational neuroscience libraries such as MRtrix [115], Dipy [40] and many

more [90, 97, 98, 102, 33, 41, 42] that are using similar SpMV operations compared to

the LiFE.

• We will design a domain-specific language (DSL) by extending the PolyMage DSL for

other computational neuroscience algorithms using the domain-specific information to

8.2. Future Work 79

decompose a sparse matrix based on low-rank Sparse Tucker Decomposition (STD) sim-

ilar to the LiFE algorithm.

• We will design a DSL-based approach to automatically generate the optimized and par-

allelized code for other applications based on the STD approach.

80 8. Conclusions and Future Work

References

[1] URL: https://pxhere.com/en/photo/1351874.

[2] Creative commons attribution 1.0 universal license (cc by 1.0). URL: https://

creativecommons.org/publicdomain/zero/1.0/.

[3] Creative commons attribution 3.0 license (cc by 3.0). URL: https://

creativecommons.org/licenses/by-sa/3.0/.

[4] Creative commons attribution 4.0 license (cc by 4.0). URL: http://

creativecommons.org/licenses/by/4.0.

[5] Nvidia nsight compute, 2019. URL: https://developer.nvidia.com/

nsight-compute-2019_5.

[6] Evrim Acar, Canan Aykut-Bingol, Haluk Bingol, Rasmus Bro, and Bülent Yener. Mul-

tiway analysis of epilepsy tensors. Bioinformatics, 23(13):i10–i18, July 2007.

[7] Evrim Acar, Canan Aykut Bingol, Haluk Bingol, Rasmus Bro, and Bulent Yener.

Seizure recognition on epilepsy feature tensor. In 2007 29th Annual International Con-

ference of the IEEE Engineering in Medicine and Biology Society, August 2007.

[8] Evrim Acar, Seyit A. Çamtepe, Mukkai S. Krishnamoorthy, and Bülent Yener. Modeling

and multiway analysis of chatroom tensors. In Intelligence and Security Informatics,

pages 256–268. 2005.

[9] Evrim Acar, Seyit A. Çamtepe, and Bülent Yener. Collective sampling and analysis of

81

https://pxhere.com/en/photo/1351874
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
https://developer.nvidia.com/nsight-compute-2019_5
https://developer.nvidia.com/nsight-compute-2019_5

82 REFERENCES

high order tensors for chatroom communications. In Intelligence and Security Infor-

matics, pages 213–224. 2006.

[10] Karan Aggarwal. Optimizing the linear fascicle evaluation algorithm for multi-

core systems, 2019. URL: https://github.com/karanaggarwal1994/

life-gpu-opt.

[11] Manuel Arenaz, Juan Touriño, and Ramón Doallo. An inspector-executor algorithm for

irregular assignment parallelization. In Jiannong Cao, Laurence T. Yang, Minyi Guo,

and Francis Lau, editors, Parallel and Distributed Processing and Applications, pages

4–15, Berlin, Heidelberg, 2005.

[12] S Balay, K Buschelman, Victor Eijkhout, William Gropp, Dinesh Kaushik, Matthew

Knepley, L Curfman Mcinnes, B F. Smith, and Hong Zhang. Petsc users manual revision

3.1. 01 2010.

[13] Muthu Manikandan Baskaran and Rajesh Bordawekar. Optimizing sparse matrix-vector

multiplication on gpus. 2009.

[14] Peter J. Basser, Sinisa Pajevic, Carlo Pierpaoli, Jeffrey Duda, and Akram Aldroubi.

In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine,

44(4):625–632, 2000.

[15] C.F. Beckmann and S.M. Smith. Tensorial extensions of independent component anal-

ysis for multisubject FMRI analysis. NeuroImage, 25(1):294–311, March 2005.

[16] Mehmet Belgin, Godmar Back, and Calvin J. Ribbens. Pattern-based sparse matrix

representation for memory-efficient SMVM kernels. In Proceedings of the 23rd inter-

national conference on Conference on Supercomputing - ICS '09, 2009.

[17] Nathan Bell and Michael Garland. Implementing sparse matrix-vector multiplication on

throughput-oriented processors. In Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis - SC '09, 2009.

https://github.com/karanaggarwal1994/life-gpu-opt
https://github.com/karanaggarwal1994/life-gpu-opt

REFERENCES 83

[18] Akrem Benatia, Weixing Ji, Yizhuo Wang, and Feng Shi. Sparse matrix format selection

with multiclass SVM for SpMV on GPU. In 2016 45th International Conference on

Parallel Processing (ICPP), aug 2016.

[19] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical

automatic polyhedral parallelizer and locality optimizer. In Proceedings of the 29th

ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’08, pages 101–113, 2008.

[20] Kevin L Briggman and Davi D Bock. Volume electron microscopy for neuronal circuit

reconstruction. Current Opinion in Neurobiology, 22(1):154–161, feb 2012.

[21] Aydın Buluç and John R Gilbert. The combinatorial BLAS: design, implementation, and

applications. The International Journal of High Performance Computing Applications,

25(4):496–509, may 2011.

[22] Cesar F. Caiafa and Franco Pestilli. Multidimensional encoding of brain connectomes.

Scientific Reports, 7(1), sep 2017.

[23] Cesar F. Caiafa, Olaf Sporns, Andrew J. Saykin, and Franco Pestilli. Unified represen-

tation of tractography and diffusion-weighted MRI data using sparse multidimensional

arrays. In Advances in Neural Information Processing Systems 30: Annual Conference

on Neural Information Processing Systems 2017, pages 4343–4354, 2017.

[24] Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. Compiler optimizations for

improving data locality. In Proceedings of the sixth international conference on Ar-

chitectural support for programming languages and operating systems - ASPLOS-VI,

1994.

[25] Venkatesan T. Chakaravarthy, Jee W. Choi, Douglas J. Joseph, Prakash Murali, Shiv-

maran S. Pandian, Yogish Sabharwal, and Dheeraj Sreedhar. On optimizing distributed

tucker decomposition for sparse tensors. In Proceedings of the 2018 International Con-

ference on Supercomputing - ICS '18, 2018.

84 REFERENCES

[26] Jee Choi, Xing Liu, Shaden Smith, and Tyler Simon. Blocking optimization techniques

for sparse tensor computation. In 2018 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), may 2018.

[27] Jee W. Choi, Xing Liu, and Venkatesan T. Chakaravarthy. High-performance dense

tucker decomposition on GPU clusters. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage, and Analysis, SC 2018, pages

42:1–42:11, 2018.

[28] Jee W. Choi, Amik Singh, and Richard W. Vuduc. Model-driven autotuning of sparse

matrix-vector multiply on GPUs. ACM SIGPLAN Notices, 45(5):115, may 2010.

[29] Andrzej Cichocki, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou, Qibin Zhao,

Cesar Caiafa, and HUY ANH PHAN. Tensor decompositions for signal processing

applications: From two-way to multiway component analysis. IEEE Signal Processing

Magazine, 32(2):145–163, mar 2015.

[30] Michał Cierniak and Wei Li. Unifying data and control transformations for distributed

shared-memory machines. In Proceedings of the ACM SIGPLAN 1995 conference on

Programming language design and implementation - PLDI '95, 1995.

[31] Albert Cohen, Sylvain Girbal, David Parello, M. Sigler, Olivier Temam, and Nicolas

Vasilache. Facilitating the search for compositions of program transformations. In

ACM ICS, pages 151–160, June 2005.

[32] R Cameron Craddock, Saad Jbabdi, Chao-Gan Yan, Joshua T Vogelstein, F Xavier

Castellanos, Adriana Di Martino, Clare Kelly, Keith Heberlein, Stan Colcombe, and

Michael P Milham. Imaging human connectomes at the macroscale. Nature Methods,

10(6):524–539, jun 2013.

[33] Alessandro Daducci, Stephan Gerhard, Alessandra Griffa, Alia Lemkaddem, Leila

Cammoun, Xavier Gigandet, Reto Meuli, Patric Hagmann, and Jean-Philippe Thiran.

The connectome mapper: An open-source processing pipeline to map connectomes with

MRI. PLoS ONE, 7(12):e48121, December 2012.

REFERENCES 85

[34] James W Demmel and Katherine A Yelick. poski: Parallel optimized sparse kernel

interface library user’s guide for version 1.0. 0 jong-ho byun richard lin. 2012.

[35] Julien Demouth. Shuffle: Tips and tricks. NVIDIA GTC, 2013.

[36] Chen Ding and Ken Kennedy. Improving cache performance in dynamic applications

through data and computation reorganization at run time. ACM SIGPLAN Notices,

34(5):229–241, may 1999.

[37] Anand Ekambaram and Eurı́pides Montagne. An alternative compressed storage format

for sparse matrices. In Computer and Information Sciences - ISCIS 2003, pages 196–

203. 2003.

[38] Paul Feautrier. Dataflow analysis of array and scalar references. International Journal

of Parallel Programming, 20(1):23–53, feb 1991.

[39] Paul Feautrier. Some efficient solutions to the affine scheduling problem. i. one-

dimensional time. International Journal of Parallel Programming, 21(5):313–347, oct

1992.

[40] Eleftherios Garyfallidis, Matthew Brett, Bagrat Amirbekian, Ariel Rokem, Stefan

van der Walt, Maxime Descoteaux, and Ian Nimmo-Smith and. Dipy, a library for

the analysis of diffusion MRI data. Frontiers in Neuroinformatics, 8, February 2014.

[41] Eleftherios Garyfallidis, Matthew Brett, Marta Morgado Correia, Guy B. Williams, and

Ian Nimmo-Smith. QuickBundles, a method for tractography simplification. Frontiers

in Neuroscience, 6, 2012.

[42] Krzysztof Gorgolewski, Christopher D. Burns, Cindee Madison, Dav Clark, Yaroslav O.

Halchenko, Michael L. Waskom, and Satrajit S. Ghosh. Nipype: A flexible, lightweight

and extensible neuroimaging data processing framework in python. Frontiers in Neu-

roinformatics, 5, 2011.

86 REFERENCES

[43] Joseph L. Greathouse and Mayank Daga. Efficient sparse matrix-vector multiplication

on GPUs using the CSR storage format. In SC14: International Conference for High

Performance Computing, Networking, Storage and Analysis, nov 2014.

[44] Shashank Gugnani, Xiaoyi Lu, Franco Pestilli, Cesar F. Caiafa, and Dhabaleswar K.

Panda. Mpi-life: Designing high-performance linear fascicle evaluation of brain con-

nectome with MPI. In 24th IEEE International Conference on High Performance Com-

puting, HiPC 2017, pages 213–222, 2017.

[45] Ping Guo and Chung wei Lee. A performance prediction and analysis integrated frame-

work for SpMV on GPUs. Procedia Computer Science, 80:178–189, 2016.

[46] Hwansoo Han and Chau-Wen Tseng. Exploiting locality for irregular scientific codes.

IEEE Transactions on Parallel and Distributed Systems, 17(7):606–618, jul 2006.

[47] Derek K Jones. Challenges and limitations of quantifying brain connectivityin vivowith

diffusion MRI. Imaging in Medicine, 2(3):341–355, June 2010.

[48] D.K. Jones. Tractography gone wild: Probabilistic fibre tracking using the wild boot-

strap with diffusion tensor MRI. IEEE Transactions on Medical Imaging, 27(9):1268–

1274, sep 2008.

[49] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. Improving locality using

loop and data transformations in an integrated framework. In Proceedings. 31st Annual

ACM/IEEE International Symposium on Microarchitecture, 1998.

[50] J. Kasthuri, S. Veerapandian, and N. Rajendiran. Biological synthesis of silver and gold

nanoparticles using apiin as reducing agent. Colloids and Surfaces B: Biointerfaces,

68(1):55–60, jan 2009.

[51] Oguz Kaya and Bora Ucar. High performance parallel algorithms for the tucker decom-

position of sparse tensors. In 2016 45th International Conference on Parallel Processing

(ICPP), aug 2016.

REFERENCES 87

[52] W. Kelly and W. Pugh. A unifying framework for iteration reordering transformations.

In Proceedings 1st International Conference on Algorithms and Architectures for Par-

allel Processing, 1995.

[53] Henry Kennedy, David C. Van Essen, and Yves Christen, editors. Micro-, Meso- and

Macro-Connectomics of the Brain. 2016.

[54] Dongmin Kim, Suvrit Sra, and Inderjit S. Dhillon. A non-monotonic method for large-

scale non-negative least squares. Optimization Methods and Software, 28(5):1012–

1039, oct 2013.

[55] Induprakas Kodukula and Keshav Pingali. Transformations for imperfectly nested

loops. In Proceedings of the 1996 ACM/IEEE conference on Supercomputing (CDROM)

- Supercomputing '96, 1996.

[56] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM

Review, 51(3):455–500, aug 2009.

[57] Sawan Kumar, Varsha Sreenivasan, Partha Talukdar, Franco Pestilli, and Devarajan

Sridharan. Real-life: Accelerating the discovery of individualizedbrain connectomes

on gpus. In Association for the Advancement of Artificial Intelligence, jan 2019.

[58] Sawan Kumar and Devarajan Sridharan Varsha Sreenivasan. Real-life: Accelerating

the discovery of individualized brain connectomes with gpus, 2019. URL: https:

//github.com/SawanKumar28/real-life.

[59] Lieven De Lathauwer, Josphine Castaing, and Jean-Franois Cardoso. Fourth-order

cumulant-based blind identification of underdetermined mixtures. IEEE Transactions

on Signal Processing, 55(6):2965–2973, June 2007.

[60] Lieven De Lathauwer and Alexandre de Baynast. Blind deconvolution of DS-CDMA

signals by means of decomposition in rank-(1, l, l) terms. IEEE Transactions on Signal

Processing, 56(4):1562–1571, April 2008.

https://github.com/SawanKumar28/real-life
https://github.com/SawanKumar28/real-life

88 REFERENCES

[61] Lieven De Lathauwer and Joos Vandewalle. Dimensionality reduction in higher-order

signal processing and rank-(r1, r2, . . . , RN) reduction in multilinear algebra. Linear

Algebra and its Applications, 391:31–55, November 2004.

[62] Jiajia Li, Yuchen Ma, Chenggang Yan, and Richard Vuduc. Optimizing sparse tensor

times matrix on multi-core and many-core architectures. In Proceedings of the Sixth

Workshop on Irregular Applications: Architectures and Algorithms, page 26–33, 2016.

[63] Jiajia Li, Jimeng Sun, and Richard Vuduc. HiCOO: Hierarchical storage of sparse ten-

sors. In SC18: International Conference for High Performance Computing, Networking,

Storage and Analysis, November 2018.

[64] Wei Li and Keshav Pingali. A singular loop transformation framework based on non-

singular matrices. International Journal of Parallel Programming, 22(2):183–205, apr

1994.

[65] Yifeng Li and Alioune Ngom. Nonnegative least-squares methods for the classifica-

tion of high-dimensional biological data. IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 10(2):447–456, mar 2013.

[66] Bangtian Liu, Chengyao Wen, Anand D. Sarwate, and Maryam Mehri Dehnavi. A

unified optimization approach for sparse tensor operations on GPUs. In 2017 IEEE

International Conference on Cluster Computing (CLUSTER), September 2017.

[67] Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey. Efficient sparse

matrix-vector multiplication on x86-based many-core processors. In Proceedings of the

27th international ACM conference on International conference on supercomputing -

ICS '13, 2013.

[68] Juan A. Lorenzo, Julio L. Albin, Tomas F. Pena, Francisco F. Rivera, and David E.

Singh. An inspector/executor based strategy to efficiently parallelize n-body simulation

programs on shared memory systems. In Sixth International Symposium on Parallel

and Distributed Computing (ISPDC'07), jul 2007.

REFERENCES 89

[69] Lee-Chung Lu. A unified framework for systematic loop transformations. ACM SIG-

PLAN Notices, 26(7):28–38, jul 1991.

[70] Gumma Venkata Kailash Madhav. Optimization of Connectome Pruning Algorithm

using Hybrid CPU-GPU methods. Master’s thesis, The Department of Computational

and Data Sciences, Indian Institute of Science, 2017.

[71] Mohammed Mahmoud, Mark Hoffmann, and Hassan Reza. An efficient storage format

for storing configuration interaction sparse matrices on CPU/GPU. In 2017 Interna-

tional Conference on Computational Science and Computational Intelligence (CSCI),

dec 2017.

[72] Mohammed Mahmoud, Mark Hoffmann, and Hassan Reza. Developing a new storage

format and a warp-based SpMV kernel for configuration interaction sparse matrices on

the GPU. Computation, 6(3):45, aug 2018.

[73] Klaus H. Maier-Hein, Peter F. Neher, et al. The challenge of mapping the human con-

nectome based on diffusion tractography. Nature Communications, 8(1), November

2017.

[74] Eduardo Martinez-Montes, Pedro A. Valdés-Sosa, Fumikazu Miwakeichi, Robin I.

Goldman, and Mark S. Cohen. Concurrent EEG/fMRI analysis by multiway partial

least squares. NeuroImage, 22(3):1023–1034, July 2004.

[75] John D. McCalpin. Stream: Sustainable memory bandwidth in high performance com-

puters. Technical report, University of Virginia, Charlottesville, Virginia, 1991-2007. A

continually updated technical report. http://www.cs.virginia.edu/stream/.

[76] John Mellor-Crummey and John Garvin. Optimizing sparse matrix–vector product com-

putations using unroll and jam. The International Journal of High Performance Com-

puting Applications, 18(2):225–236, may 2004.

[77] Klaus-Dietmar Merboldt, Wolfgang Hanicke, and Jens Frahm. Self-diffusion NMR

90 REFERENCES

imaging using stimulated echoes. Journal of Magnetic Resonance (1969), 64(3):479–

486, oct 1985.

[78] N. Mitchell, L. Carter, and J. Ferrante. Localizing non-affine array references. In 1999

International Conference on Parallel Architectures and Compilation Techniques (Cat.

No.PR00425).

[79] Fumikazu Miwakeichi, Eduardo Martinez-Montes, Pedro A. Valdés-Sosa, Nobuaki

Nishiyama, Hiroaki Mizuhara, and Yoko Yamaguchi. Decomposing EEG data

into space–time–frequency components using parallel factor analysis. NeuroImage,

22(3):1035–1045, July 2004.

[80] Susumu Mori, Barbara J. Crain, V. P. Chacko, and Peter C. M. Van Zijl. Three-

dimensional tracking of axonal projections in the brain by magnetic resonance imaging.

Annals of Neurology, 45(2):265–269, feb 1999.

[81] Morten Mørup, Lars Kai Hansen, and Sidse M. Arnfred. ERPWAVELAB. Journal of

Neuroscience Methods, 161(2):361–368, April 2007.

[82] Morten Mørup, Lars Kai Hansen, and Sidse M. Arnfred. Algorithms for sparse nonneg-

ative tucker decompositions. Neural Computation, 20(8):2112–2131, August 2008.

[83] Morten Mørup, Lars Kai Hansen, Christoph S. Herrmann, Josef Parnas, and Sidse M.

Arnfred. Parallel factor analysis as an exploratory tool for wavelet transformed event-

related EEG. NeuroImage, 29(3):938–947, February 2006.

[84] Susanne G. Mueller, Michael W. Weiner, Leon J. Thal, Ronald C. Petersen, Clifford R.

Jack, William Jagust, John Q. Trojanowski, Arthur W. Toga, and Laurel Beckett. Ways

toward an early diagnosis in alzheimer’s disease: The alzheimer’s disease neuroimaging

initiative (ADNI). Alzheimer's & Dementia, 1(1):55–66, jul 2005.

[85] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. Polymage: Automatic opti-

mization for image processing pipelines. SIGARCH Comput. Archit. News, 43(1):429–

443, March 2015.

REFERENCES 91

[86] Kumudha Narasimhan. Optimizing dense matrix computations with PolyMage. Mas-

ter’s thesis, The Department of Computer Science and Automation, Indian Institute of

Science, 2018.

[87] Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard Vuduc, and P. Sadayappan.

Load-balanced sparse MTTKRP on GPUs. In 2019 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), May 2019.

[88] I. V. Oseledets, D. V. Savostianov, and E. E. Tyrtyshnikov. Tucker dimensionality reduc-

tion of three-dimensional arrays in linear time. SIAM Journal on Matrix Analysis and

Applications, 30(3):939–956, January 2008. URL: https://doi.org/10.1137/

060655894, doi:10.1137/060655894.

[89] Evangelos E. Papalexakis, Christos Faloutsos, and Nicholas D. Sidiropoulos. Tensors

for data mining and data fusion. ACM Transactions on Intelligent Systems and Technol-

ogy, 8(2):1–44, oct 2016.

[90] Fernando Perez, Brian E. Granger, and John D. Hunter. Python: An ecosystem for

scientific computing. Computing in Science & Engineering, 13(2):13–21, March 2011.

[91] Ioakeim Perros, Robert Chen, Richard Vuduc, and Jimeng Sun. Sparse hierarchical

tucker factorization and its application to healthcare. In 2015 IEEE International Con-

ference on Data Mining, nov 2015.

[92] Ioakeim Perros, Robert Chen, Richard W. Vuduc, and Jimeng Sun. Sparse hierarchical

tucker factorization and its application to healthcare. CoRR, abs/1610.07722, 2016.

URL: http://arxiv.org/abs/1610.07722, arXiv:1610.07722.

[93] F. Pestilli and C. F. Caiafa. Demo data for multidimensional encoding of

brain connectomes, 2016. URL: https://scholarworks.iu.edu/

cgi-bin/mdssRequest.pl?file=2022/20995/Demo_Data_for_

Multidimensional_Encoding_of_Brain_Connectomes.tar.gz.

https://doi.org/10.1137/060655894
https://doi.org/10.1137/060655894
http://dx.doi.org/10.1137/060655894
http://arxiv.org/abs/1610.07722
http://arxiv.org/abs/1610.07722
https://scholarworks.iu.edu/cgi-bin/mdssRequest.pl?file=2022/20995/Demo_Data_for_Multidimensional_Encoding_of_Brain_Connectomes.tar.gz
https://scholarworks.iu.edu/cgi-bin/mdssRequest.pl?file=2022/20995/Demo_Data_for_Multidimensional_Encoding_of_Brain_Connectomes.tar.gz
https://scholarworks.iu.edu/cgi-bin/mdssRequest.pl?file=2022/20995/Demo_Data_for_Multidimensional_Encoding_of_Brain_Connectomes.tar.gz

92 REFERENCES

[94] F. Pestilli and C. F. Caiafa. Encode: Multidimensional encoding of brain connectomes,

2016. URL: https://github.com/brain-life/encode.

[95] Franco Pestilli, Jason D Yeatman, Ariel Rokem, Kendrick N Kay, and Brian A Wan-

dell. Evaluation and statistical inference for human connectomes. Nature Methods,

11(10):1058–1063, sep 2014.

[96] Eric T. Phipps and Tamara G. Kolda. Software for sparse tensor decomposition on

emerging computing architectures. SIAM Journal on Scientific Computing, 41(3):C269–

C290, January 2019.

[97] S. Pieper, B. Lorensen, W. Schroeder, and R. Kikinis. The NA-MIC kit: ITK, VTK,

pipelines, grids and 3d slicer as an open platform for the medical image computing

community. In 3rd IEEE International Symposium on Biomedical Imaging: Macro to

Nano, 2006.

[98] C Pierpaoli, P Jezzard, P J Basser, A Barnett, and G Di Chiro. Diffusion tensor MR

imaging of the human brain. Radiology, 201(3):637–648, December 1996.

[99] William Pugh. The omega test: a fast and practical integer programming algorithm for

dependence analysis. In Proceedings of the 1991 ACM/IEEE conference on Supercom-

puting - Supercomputing '91, 1991.

[100] William Pugh and David Wonnacott. Nonlinear array dependence analysis. Technical

report, 1994.

[101] Vivek Sarkar and Radhika Thekkath. A general framework for iteration-reordering loop

transformations. ACM SIGPLAN Notices, 27(7):175–187, jul 1992.

[102] K. Setsompop, J. Cohen-Adad, B.A. Gagoski, T. Raij, A. Yendiki, B. Keil, V.J. Wedeen,

and L.L. Wald. Improving diffusion MRI using simultaneous multi-slice echo planar

imaging. NeuroImage, 63(1):569–580, October 2012.

https://github.com/brain-life/encode

REFERENCES 93

[103] Manu Shantharam, Anirban Chatterjee, and Padma Raghavan. Exploiting dense sub-

structures for fast sparse matrix vector multiplication. The International Journal of

High Performance Computing Applications, 25(3):328–341, aug 2011.

[104] Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E.

Papalexakis, and Christos Faloutsos. Tensor decomposition for signal processing and

machine learning. IEEE Transactions on Signal Processing, 65(13):3551–3582, jul

2017.

[105] Shaden Smith and George Karypis. Accelerating the tucker decomposition with com-

pressed sparse tensors. In Lecture Notes in Computer Science, pages 653–668. 2017.

[106] Shaden Smith, Jongsoo Park, and George Karypis. Sparse tensor factorization on many-

core processors with high-bandwidth memory. In 2017 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), May 2017.

[107] Olaf Sporns, Giulio Tononi, and Rolf Kötter. The human connectome: A structural

description of the human brain. PLoS Computational Biology, 1(4):e42, 2005.

[108] Michelle Mills Strout, Alan LaMielle, Larry Carter, Jeanne Ferrante, Barbara Kreaseck,

and Catherine Olschanowsky. An approach for code generation in the sparse polyhedral

framework. Parallel Comput., 53(C):32–57, April 2016.

[109] Daniel Stucht, K. Appu Danishad, Peter Schulze, Frank Godenschweger, Maxim Zait-

sev, and Oliver Speck. Highest resolution in vivo human brain MRI using prospective

motion correction. PLOS ONE, 10(7):e0133921, jul 2015.

[110] Jimeng Sun, Spiros Papadimitriou, and Philip Yu. Window-based tensor analysis on

high-dimensional and multi-aspect streams. In Sixth International Conference on Data

Mining (ICDM'06), December 2006.

[111] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and graphs. In Pro-

ceedings of the 12th ACM SIGKDD international conference on Knowledge discovery

and data mining - KDD '06, 2006.

94 REFERENCES

[112] Xiangzheng Sun, Yunquan Zhang, Ting Wang, Xianyi Zhang, Liang Yuan, and Li Rao.

Optimizing SpMV for diagonal sparse matrices on GPU. In 2011 International Confer-

ence on Parallel Processing, sep 2011.

[113] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting performance

data with papi-c. In Matthias S. Müller, Michael M. Resch, Alexander Schulz, and

Wolfgang E. Nagel, editors, Tools for High Performance Computing 2009, pages 157–

173, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[114] William Thies, Frédéric Vivien, Jeffrey Sheldon, and Saman Amarasinghe. A unified

framework for schedule and storage optimization. In Proceedings of the ACM SIGPLAN

2001 conference on Programming language design and implementation - PLDI '01,

2001.

[115] J-Donald Tournier, Fernando Calamante, and Alan Connelly. Mrtrix: Diffusion trac-

tography in crossing fiber regions. Int. J. Imaging Syst. Technol., 22(1):53–66, March

2012.

[116] Tucania. URL: https://en.wikipedia.org/wiki/File:

DiffusionMRI_glyphs.png.

[117] L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,

31:279–311, 1966.

[118] F. Vázquez, J. J. Fernández, and E. M. Garzón. A new approach for sparse matrix vector

product on NVIDIA GPUs. Concurrency and Computation: Practice and Experience,

23(8):815–826, sep 2010.

[119] Anand Venkat, Mary Hall, and Michelle Strout. Loop and data transformations for

sparse matrix code. In Proceedings of the 36th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation - PLDI 2015, 2015.

[120] Anand Venkat, Mahdi Soltan Mohammadi, Jongsoo Park, Hongbo Rong, Rajkishore

Barik, Michelle Mills Strout, and Mary Hall. Automating wavefront parallelization for

https://en.wikipedia.org/wiki/File:DiffusionMRI_glyphs.png
https://en.wikipedia.org/wiki/File:DiffusionMRI_glyphs.png

REFERENCES 95

sparse matrix computations. In SC16: International Conference for High Performance

Computing, Networking, Storage and Analysis, nov 2016.

[121] Anand Venkat, Manu Shantharam, Mary Hall, and Michelle Mills Strout. Non-affine

extensions to polyhedral code generation. In IEEE/ACM International Symposium on

Code Generation and Optimization, pages 185:185–185:194, 2014.

[122] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Mathematical

Software – ICMS 2010, pages 299–302. 2010.

[123] Maarten De Vos, Lieven De Lathauwer, Bart Vanrumste, Sabine Van Huffel, and W. Van

Paesschen. Canonical decomposition of ictal scalp EEG and accurate source localisa-

tion: Principles and simulation study. Computational Intelligence and Neuroscience,

2007:1–10, 2007.

[124] Richard Vuduc, James W Demmel, and Katherine A Yelick. OSKI: A library of auto-

matically tuned sparse matrix kernels. Journal of Physics: Conference Series, 16:521–

530, jan 2005.

[125] Richard W. Vuduc, James Demmel, Katherine A. Yelick, and Berkeley Benchmark-

ing. The optimized sparse kernel interface (oski) library user’s guide for version 1.0.1h.

2007.

[126] Richard W. Vuduc and Hyun-Jin Moon. Fast sparse matrix-vector multiplication by

exploiting variable block structure. In High Performance Computing and Communica-

tions, pages 807–816. 2005.

[127] Mark T. Wallace, Ramnarayan Ramachandran, and Barry E. Stein. A revised view

of sensory cortical parcellation. Proceedings of the National Academy of Sciences,

101(7):2167–2172, feb 2004.

[128] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and

96 REFERENCES

James Demmel. Optimization of sparse matrix-vector multiplication on emerging mul-

ticore platforms. In Proceedings of the 2007 ACM/IEEE conference on Supercomputing

- SC '07, 2007.

[129] M.E. Wolf, D.E. Maydan, and Ding-Kai Chen. Combining loop transformations con-

sidering caches and scheduling. In Proceedings of the 29th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture. MICRO 29, 1996.

[130] Bo Wu, Zhijia Zhao, Eddy Zheng Zhang, Yunlian Jiang, and Xipeng Shen. Complexity

analysis and algorithm design for reorganizing data to minimize non-coalesced memory

accesses on GPU. In Proceedings of the 18th ACM SIGPLAN symposium on Principles

and practice of parallel programming - PPoPP '13, 2013.

[131] Carl Yang, Aydin Buluç, and John D. Owens. Design principles for sparse matrix mul-

tiplication on the GPU. CoRR, abs/1803.08601, 2018. URL: http://arxiv.org/

abs/1803.08601, arXiv:1803.08601.

[132] Tatsuya Yokota and Andrzej Cichocki. Multilinear tensor rank estimation via sparse

tucker decomposition. In 2014 Joint 7th International Conference on Soft Computing

and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelli-

gent Systems (ISIS), dec 2014.

[133] Syed Zubair and Wenwu Wang. Tensor dictionary learning with sparse TUCKER

decomposition. In 2013 18th International Conference on Digital Signal Processing

(DSP), jul 2013.

http://arxiv.org/abs/1803.08601
http://arxiv.org/abs/1803.08601
http://arxiv.org/abs/1803.08601

	Acknowledgements
	Publications based on this Thesis
	Abstract
	Keywords
	Introduction
	Background
	Terminology
	The LiFE Algorithm
	Data Conversion Steps
	Matrix Computations using Sparse Tensor Decomposition

	Problem and Challenges
	Large Dataset
	Architecture-specific Challenges
	Multi-core architecture
	GPU architecture

	Indirect Array Accesses

	Optimizations
	Target-independent Optimizations
	Basic Compiler Optimizations
	Data Restructuring
	Computation Partitioning

	Target-specific Optimizations
	CPU-specific Optimizations
	GPU-specific Optimizations

	Domain-Specific Language Extensions
	PolyMage DSL
	PolyMage Compiler flow and Optimizations
	New PolyMage Constructs

	Experimental Evaluation
	Experimental Setup
	Datasets
	Results and Analysis on Multi-core System
	Code Versions
	Analysis

	Results and Analysis on GPU
	Code Versions
	Analysis

	Performance Analysis based on various parameters of LiFE
	Execution Time Comparison of different Code Implementations
	Error Quantification and Overhead Comparison of different Implementations

	Related Work
	Optimizing SpMV operations of the LiFE algorithm
	Optimizing Irregular Applications using Inspector/Executor Paradigm
	Optimizing SpMV operations for CPUs and GPUs
	Optimizing tensor operations for CPUs and GPUs

	Conclusions and Future Work
	Summary
	Future Work

	References

