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Abstract

Scientific applications that operate on large data sets require huge amount of computation

power and memory. These applications are typically run on High Performance Computing

(HPC) systems that consist of multiple compute nodes, connected over an network inter-

connect such as InfiniBand. Each compute node has its own memory and does not share

the address space with other nodes. A significant amount of work has been done in past

two decades on parallelizing for distributed-memory architectures. A majority of this work

was done in developing compiler technologies such as high performance Fortran (HPF)

and partitioned global address space (PGAS). However, several steps involved in achiev-

ing good performance remained manual. Hence, the approach currently used to obtain the

best performance is to rely on highly tuned libraries such as ScaLAPACK. The objective of

this work is to improve automatic compiler and runtime support for distributed-memory

clusters for regular programs. Regular programs typically use arrays as their main data

structure and array accesses are affine functions of outer loop indices and program pa-

rameters. A lot of scientific applications such as linear-algebra kernels, stencils, partial

differential equation solvers, data-mining applications and dynamic programming codes

fall in this category.

In this work, we propose techniques for finding computation mapping and data allo-

cation when compiling regular programs for distributed-memory clusters. Techniques for

iv
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transformation and detection of parallelism, relying on the polyhedral framework already

exist. We propose automatic techniques to determine computation placements for identi-

fied parallelism and allocation of data. We model the problem of finding good computation

placement as a graph partitioning problem with the constraints to minimize both commu-

nication volume and load imbalance for entire program. We show that our approach for

computation mapping is more effective than those that can be developed using vendor-

supplied libraries. Our approach for data allocation is driven by tiling of data spaces

along with a compiler assisted runtime scheme to allocate and deallocate tiles on-demand

and reuse them. Experimental results on some sequences of BLAS calls demonstrate a

mean speedup of 1.82× over versions written with ScaLAPACK. Besides enabling weak

scaling for distributed memory, data tiling also improves locality for shared-memory par-

allelization. Experimental results on a 32-core shared-memory SMP system shows a mean

speedup of 2.67× over code that is not data tiled.
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Chapter 1

Introduction

1.1 High Performance Computing (HPC) systems

Scientific applications that operate on large data sets require huge amount of computation

power and memory. These applications are run on High Performance Computing (HPC)

systems. A typical HPC setup consists of multiple compute nodes that are connected over

a network interconnect such as InfiniBand. Each node consists of a set of processors that

have shared memory; typically, an SMP system of general-purpose multi-cores. Each

node could also consist of specialized accelerators such as GPUs, Xeon Phis connected to

multi-core processors through PCIex bus. Each node has its own memory and does not

share their address space with other nodes. Due to the high latency of interconnects, it is

not practical to automatically maintain coherency across different nodes. Hence, it is the

responsibility of the programmer to maintain coherency.

1
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1.2 Programming HPC systems

To run scientific applications with large datasets on HPC systems and to achieve scalable

performance, one has to perform following steps:

1. Extract maximum coarse grained parallelism by breaking large computation into

smaller tasks and identifying the tasks that can be executed in parallel.

2. Distributing the parallel tasks across multiple nodes of cluster (computation place-

ment).

3. Allocate the data required by each task on the node on which the task executes.

4. Schedule the tasks across multiple nodes without violating the dependences between

them.

5. Once a task finishes its execution, perform data transfers required to maintain co-

herence between nodes.

The effort required to manually perform the above steps is enormous, error prone and

time consuming. An approach for programming HPC systems that automatically performs

all the above steps without any user input and achieves scalable performance for HPC

systems is highly desirable.

1.3 Automatic parallelization for HPC systems

Automatic parallelization of arbitrary programs is a very hard problem. However, for a

restricted class of programs called regular programs it is possible to develop compiler

and runtime techniques required for automatic parallelization. Regular programs typically
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use arrays as their main data structure and array accesses are affine functions of outer loop

indices and program parameters. A lot of scientific applications such as linear-algebra ker-

nels, stencils, partial differential equation solvers, data-mining applications and dynamic

programming codes fall in this category of regular programs. In this thesis we develop

efficient solutions for several steps (2,3 and 5 from section 1.2) required for automatic

parallelization of regular programs.

1.4 Existing approaches

A significant amount of work has been done in past two decades on parallelizing for

distributed-memory architectures. A majority of work was done in developing compiler

technology for High Performance Fortran (HPF). However, even in domains where it was

suitable, namely programs with regular accesses, there was limited success. Several steps

involved in achieving good performance remained manual. The poor quality of communi-

cation code as well as the inability to automatically apply complex transformations was a

big limitation. Hence, even for programs that involve regular accesses such as sequences

of linear algebra kernels, the approach currently used to obtain the best performance is to

either write manual MPI code or to rely on highly tuned libraries such as ScaLAPACK. In

addition, none of the previous approaches on automatic distributed-memory parallelization

and code generation have been directly employed so far even in domain-specific language

compilation. MPI still happens to be the dominant and de facto programming model due to

the lack of any compiler support. The objective of this thesis is to improve automatic com-

piler and runtime support for distributed-memory clusters of multi-cores with emphasis on

exploiting locality.

Some of the limitations in parallelization and code generation for regular programs, in

particular, affine loop nests, have been addressed in recent years [1, 2, 3]. These works
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provide techniques for transformation and detection of parallelism, and generation of com-

munication sets relying on the polyhedral framework. However, these works use a simple

strategy to map identified parallelism – typically block or block-cyclic. Previous automatic

data distribution works [4, 5, 6, 7] also employed only block or block-cyclic mappings for

loop nests with the possibility to re-distribute in between.These strategies to map identified

parallelism significantly impact communication volume and load balance. Some special-

ized mappings such as multi-partitioning [8, 9] were known and implemented in dHPF, but

these works did not provide any automatic way to determine such mappings. In addition

to this, there is significant room for improvement in the way data allocation is handled – to

better exploit locality in conjunction with compute transformations. This thesis provides

an effective solution to these missing steps.

1.5 Our approach

Although manual distributed-memory parallelization as seen by a programmer often starts

with the step of data decomposition followed by computation decomposition, we show

that this seemingly natural approach is not the efficient one when designing flexible and

automatic compiler support. We argue that emphasis should first be placed on determining

right computation transformation and a placement. If good computation placements are

found, the initial data distribution only impacts “first-read” and “last write” communica-

tion. Determining a data distribution and then a compute distribution as done by some

previous approaches may even prevent certain computation distributions where the owner

of data has to change in order to exploit locality. Our approach neither has the notion

of an owner for data, nor that of fixed distribution, nor re-distribution. Instead data that

is accessed for a piece of computation is allocated on demand (if not already allocated),

with communication data flowing from one node to another as dictated by computation
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placement.

We develop an automatic technique to find good computation placements for the en-

tire program. We model the problem of finding good computation placements as a graph

partitioning problem with constraints to minimize both communication volume and load

imbalance. For a given program, we build inter Tile Communication Graph (TCG) in

which each vertex represents a compute tile. An edge is added between two vertices if

and only if there is communication between the corresponding two tiles when they are

executed on different nodes. The weight of the edge will be equal to the communication

volume between the two tiles. Finding the optimal computation mappings is equivalent

to partitioning the TCG into p (number of nodes) equal size partitions with the objec-

tive to minimize the sum of those edge weights that straddle partitions. We also identify

compute tiles that belong to a parallel phase and add constraints to minimize load imbal-

ance within each parallel phase. This approach encompassing traditional mappings such

as block, block-cyclic and other specialized mappings such as multi-partitioning and any

other arbitrary mappings. We also find the optimal dimensionality of these mappings.

Our approach for data allocation works by tiling of data spaces. A data tile is the

granularity at which data is allocated and is itself contiguous in main memory. Data local

to a node as well as that which is received from remote nodes is accessed by first addressing

a data tile and then indexing into it. A compiler-based approach with light-weight runtime

helper functions handles on-demand allocation and deallocation of tiles, and their reuse.

The approach can work in conjunction with either static or dynamic scheduling of compute

tiles. Besides enabling weak scaling for distributed memory, data tiling improves locality

for shared-memory parallelization – by reducing cache conflict misses, data TLB misses,

and false sharing, and allowing better prefetching.
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1.6 Contributions

The contributions of this work are:

• developing a technique to map identified parallelism after transformation which will

minimize both communication volume and load imbalance. This approach encom-

passing block, block-cyclic and other specialized and arbitrary mappings.

• devising a data allocation technique based on data tiling to provide improved locality

and enable weak scaling for distributed memory parallelization.

• present a dynamic, schedule independent data tile buffer reuse techniques.

• develop an efficient data movement scheme based on inter tile dependences that will

minimize the communication volume.

• demonstrating through experiments that our approach is significantly better than

previous approaches and the code generated outperforms that which can be written

even using vendor supplied BLAS libraries.

More specifically, for sequences of BLAS calls, the code we automatically generate out

performs code manually written using Intel ScaLAPACK library by a mean factor of 1.82×

while running on a 32-node InfiniBand cluster of multicores. Shared-memory paralleliza-

tion results obtained on a 32-core shared-memory NUMA SMP system show a mean

speedup of 2.67× over code that is not data tiled.

1.7 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 presents a brief introduction to

the polyhedral model. Chapter 3 describes motivation behind our computation distribution
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strategy. Chapter 4 describes our approach to find computation placements. Chapter 5

describes how data tilings are found and how allocation is performed based on a tiled

view of data spaces. Experimental results are presented in Chapter 7. Related work and

conclusions are presented in Chapter 8 and Chapter 9 respectively.



Chapter 2

Background

Polyhedral model is a mathematical framework that is used to perform various loop trans-

formations such as loop reversal, skewing, interchange, peeling, shifting, fusion, distribu-

tion and tiling. In this chapter, we present a brief overview of the polyhedral model and

introduce the notation that will be used throughout the thesis.

All row vectors will be typeset in bold lowercase, while regular vectors are typeset

with an overhead arrow. The set of all integers is represented by Z.

2.1 Hyperplanes and polyhedra

Definition 1. Affine function A k-dimensional function f is called affine function if it can

be expressed in following form:

f(~v) = Mf~v + ~f0 (2.1)

8
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here ~v =


v1
...

vd

 is a d-dimensional vector of integers and Mf ∈ Zk×d is an integer

matrix with k rows and d columns and represents the linear transformation, f0 ∈ Zk is a

k-dimensional vector that represents a constant offset.

Definition 2. Affine sub-spaces A set of vectors forms an affine sub-space if it is closed

under affine combination. i.e., if ~x, ~y are in the space, then all the vector which are an

affine combination of ~x, ~y also belong to space.

Definition 3. Hyperplane An affine hyperplane is an n−1 dimensional affine sub-space of

an n dimensional space. An affine hyperplane can be viewed as a one-dimensional affine

function φ(~v) that maps an n-dimensional space onto a one-dimensional space.

φ(~v) = h · ~v + c (2.2)

The row vector h represents the normal to the hyperplane. All the hyperplanes which

have same value of h are parallel to each other. Throughout this thesis, a hyperplane is

often referred to by its row vector, h. A hyperplane h · ~v = k divides the affine space into

two half-spaces, the non-negative half-space h · ~v ≥ k, and the non-positive half-space,

h · ~v ≤ k.

Definition 4. Polyhedron A polyhedron is an intersection of a finite number of half-spaces.

The set of affine inequalities, each representing a face, is used to represent the polyhe-

dron. A polyhedron with m inequalities is represented as

{~x ∈ Zn | A~x+~b ≥ ~0}. (2.3)
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Definition 5. Affine loop nest A sequence of arbitrarily nested loops with loop bounds and

array accesses that are affine functions of program parameters and outer loop variables

are called as affine loop nests.

Program parameters, denoted by ~p, represent problem sizes and other symbolic param-

eters that are loop invariant. Programs that only consist of affine loop nests are called as

regular programs.

2.2 Polyhedral model

Polyhedral model is a mathematical intermediate representation that captures the dynamic

instances of affine loop nests and dependences between them.

Let S1, S2, . . . , Sn be the statements of affine loop nests of a program. The iteration

vector of a statement S, denoted by ~iS , represents a dynamic instance of statement appear-

ing in the loop nest. The set of all iteration vectors for a given statement is called as the

iteration domain of S and is denoted by DS . In polyhedral model, the iteration domain of

a statement is modeled as a set of integer points inside polyhedra. For the example shown

in the Figure 2.1, (i, j) is the iteration vector and the iteration domain is a polyhedron

formed by loop bounds i ≥ 0, i < N, j ≥ 1, j < N , as shown in Figure 2.3. Iteration

domain is concisely represented as a matrix as shown in Figure 2.2.

for (i=0; i<N; i++)

for (j=1; j<N; j++)

X[i][j] = X[i][j] - X[i][j-1] * A[i][j] / B[i][j-1]; //S1

Figure 2.1: Example affine program
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DS1 :


1 0 0 0

0 1 0 −1

−1 0 1 −1

0 −1 1 −1




i

j

N

1

 ≥ 0

Figure 2.2: Matrix representation of iteration domain for S1 from Figure 2.1

i

j

j ≥ 1 j < N

i ≥ 0

i < N

Figure 2.3: Iteration domain for S1 from Figure 2.1

2.3 Array access functions

An array access function captures the data locations accessed by a statement. All array

accesses in a regular program are affine functions of outer loop iterators and program

parameters. In the example shown in Figure 2.1 array access X[i][j − 1] is represented by

affine function XS1 .

XS1 =

1 0 0

0 1 −1



i

j

1

 (2.4)



Chapter 2. Background 12

2.4 Schedules

A schedule is an affine function that describes order in which each dynamic instance of

the statement will be executed.

Definition 6. Affine schedule An n-dimensional schedule of statement a S is an affine

function of the outer loop iterations ~iS and program parameters ~p, denoted by ΘS .

ΘS(~iS) = TS


~iS

~p

1

 , TS ∈ Zn×(dim( ~iS)+dim(~p)+1) (2.5)

A scheduling function associates a logical execution date (or a timestamp) to each

dynamic instance of a given statement. This date can either be a scalar (one-dimensional

schedule) or a vector (multi-dimensional schedule). The execution order of the instances

is given by lexicographic ordering of the associated timestamps. Two instances with the

same timestamp can be executed in parallel.

2.5 Polyhedral transformations

In the polyhedral model, loop transformations such as loop reversal, skewing, interchange,

peeling, shifting, fusion, distribution and tiling are performed by changing the schedul-

ing function ΘS . A multi-dimensional scheduling function captures a sequence of affine

loop transformations. A loop interchange transformation is to be performed by choosing0 1

1 0

 as scheduling function, for the example shown in Figure 2.1. Not all transfor-

mations preserve program semantics. The notation of dependences is used to reason about

the valid program transformations.
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2.6 Polyhedral dependences

Two iterations are said to be dependent if they access the same memory location and one of

them is a write. Dependences are classified based on the order of read and write accesses.

If the source access is a write and target is a read, it is called as RAW (Read after Write)

or flow dependence. If a write precedes a read to same location, then the dependence is

called a WAR (Write after Read) or anti-dependence. If both source and target accesses

are writes then it is called a WAW (Write after Write) or output dependence. Read-after-

read or RAR are not actual dependences, but they can be used in characterizing reuse. A

program transformation is valid, only if it respects all dependences in the original program.

2.7 Data dependence graph

A Data Dependence Graph (DDG) is a directed multi-graph G = (V, E) with each vertex

representing a statement and an edge, e ∈ E, from node Si to Sj represents a dependence

between source and target accesses in Si and Sj respectively.

2.8 Dependence polyhedron

In polyhedral model, program data dependences are captured by dependence polyhedron,

Pe which corresponds to an edge in the DDG. The dependence polyhedron is a subset of

the cartesian product of the iteration domains of source and target access statements. It

precisely captures the exact data dependences between the dynamic instance of Si and Sj .

〈~s,~t〉 ∈ Pe =⇒ ~s ∈ DSi
,~t ∈ DSj

, ~s and ~t access same data (2.6)

Dependence between access X[i][j] and X[i′][j′ − 1] in the example from Figure 2.1
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can be represented by a polyhedron with the constraints shown in Equation(2.7).

0 ≤ i ≤ N − 1

1 ≤ j ≤ N − 1

0 ≤ i′ ≤ N − 1

1 ≤ j′ ≤ N − 1

i = i′

j = j′ − 1

(2.7)

i

j

Figure 2.4: Dependence between access X[i][j] and X[i][j − 1] from Figure 2.1

The dependence polyhedron is the most important structure that is used to find good

program and data transformations, to compute communication sets and to determine valid

execution order.
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2.9 Operations on polyhedra

We can perform various operations such as union, intersection, difference on the polyhe-

dra. There are libraries such as Piplib [10] and isl [11] which can be used to perform these

operations. Another important operation is projection where we can project out different

dimensions of a polyhedron using Fourier-Motzkin elimination.



Chapter 3

Parallelization Strategy

In this chapter we compare two different strategies for programming distributed memory

architectures, namely owner computes rule and computer owns rule.

3.1 Owner computes rule

In owner computes rule, every data element has a fixed owner and all iterations that com-

pute its new value should be executed on it. In this scheme, data distributions are deter-

mined first and computation placement are derived from the data distributions according

to owner computes rule. This approach is used in most of the previous distributed memory

compilation systems such as HPF (High Performance Fortran). Consider the Jacobi style

stencil code shown in the Figure 3.1. All iterations of t for a particular value of i will

write to the same location, hence, with owner computes rule all of them needs be executed

on the same node. Figure 3.2 shows execution of the stencil with owner computes rule.

Stencils have near-neighbor dependence patterns and hence, there is a need to commu-

nicate boundary values after every time step. Owner computes rule may prevent certain

16
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for (t=0; t<T; t++)

for (i=1; i<N-2; i++)

S1:A[(t+1)%2][i]=(A[t%2][i-1]+A[t%2][i]+A[t%2][i+1])/3.0;

Figure 3.1: Jacobi style stencil

i

t

Figure 3.2: Stencil execution with owner computes rule

computation placements where the owner of data has to change in order to exploit locality

like time tiling shown in Figure 3.3.

3.2 Computer owns rule

In computer owns rule, we first determine a computation placement and then data is al-

located according to the computation placement. In this scheme, an array location does

not have a single fixed owner; rather, its value could be recomputed by different compute

nodes. The node which last writes to an array element will be its current owner. Due to

this relaxation, computer owns rule is more flexible and generic than the owner computes

rule. It can support any arbitrary computation placements such as time tiling of sten-

cils [12] shown in Figure 3.3. Figure 3.4 shows the performance of heat-2d with and
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i

t

Figure 3.3: Stencil execution with time tiling

without time tiling. Time tiling improves the single thread performance on shared mem-

ory due to improved data locality. For distributed-memory, time tiling reduces the number

of communication phases and leads to better communication coalescing. For the stencil

example with owner computes rule (Figure 3.2), boundary values need to be communi-

cated after every time step whereas, for time tiled code we need to communicate only after

entire tile is executed thus reducing the number of communication phases. Also, with

time tiled code a bigger coalesced message will be communicated whereas, with owner

compute rules boundary values will be communicated after every time step. As shown in

Figure 3.4, with time tiling we see very good performance which is close to ideal.

3.3 Data remapping with owner computes rule

HPF also provides an option to specify different data distributions for different parts of the

program (dynamic distributions). Programmer first needs to decompose the input program

into regions (phases). For each phase, programmer needs to specify data distributions and

array alignments for each array. HPF remaps data between different phases. Even with

this dynamic distribution support, we cannot implement locality enhancing transformation
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Figure 3.4: Performance of 2-d heat with and without time tiling

such as time tiling in HPF, as the owner of data keeps changing in every time step.

Hence, for our distributed memory compilation framework we choose the more flex-

ible computer owns rule. We first determine a good computation placement and data is

allocated according to the computation placement. In this approach, static, dynamic data

distributions and array alignments are implicitly derived from the computation placement.

Also, this approach enables us to model replication of data which is required to extract

maximum parallelism.



Chapter 4

Computation Placement

In this chapter, we describe how we find a suitable way of mapping available parallelism to

a set of nodes. In particular, the presented strategy subsumes commonly used distributions

like block, block-cyclic as well as more complex mapping schemes. The mappings are

obtained for all parallel loop nests together.

4.1 Common distribution patterns

In this section, we briefly describe commonly used distribution patterns – block, cyclic and

block cyclic distributions. A block distribution (Figure 4.1a) distributes a set of iterations

into equal or nearly equal contiguous chunks where the number of chunks is equal to the

number of processors. A cyclic distribution (Figure 4.1b) distributes a set of iterations

across processors in a round-robin manner at the granularity of a single iteration. When

this granularity is changed to a contiguous chunk of some fixed size, the resulting mapping

is a block-cyclic mapping (Figure 4.2a).

20
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0 1 2 3

(a) Block distribution

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(b) Cyclic distribution

Figure 4.1: Distribution patterns
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(a) Block cyclic distribution
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(b) Sudoku distribution

Figure 4.2: Distribution patterns
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4.2 Sudoku mappings

We define another specialized mapping that we call a sudoku mapping due to its similarity

with the popular number placement puzzle of the same name. A sudoku mapping assigns

tiles from an n-dimensional view to processors in a way such that all tiles along any of the

(n− 1 dimensional) canonical hyperplanes are mapped on to distinct processors. One gets

a perfect sudoku mapping when the iteration grid is a hypercube and a face has the same

number of tiles as processors. We will see that such a mapping (Figure 4.2b) has inter-

esting properties in minimizing communication if different pieces of computation require

an array to be distributed in conflicting ways. Multipartitioning [8] implemented in dHPF

is one possible perfect sudoku mapping and such a mapping was used in the manually

parallelized versions of NAS BT and SP [13].

4.3 Motivating example

Consider sample ADI code shown in Figure 4.3 which is a representative version of NAS

SP and NAS BT benchmarks. Figure 4.4 shows tiled and parallelized version of the

representative ADI in Figure 4.4. The optimal computation mapping πS1 for the forward

x sweep loop is the block distribution along ii loop iterations. This distribution leads to

no communication and all nodes get equal number of iterations. Similarly, the optimal

mapping πS2 for the y sweep is the block distribution of jj. However, these mappings

are not optimal for the entire program as they demand a transpose of array X between

the nests of S1 and S2, and thus a large amount of communication. Significantly better

mappings exist and in this section, we will describe a technique to find such computation

mappings automatically.
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//forward x sweep

for (i=0; i<N; i++)

for (j=1; j<N; j++)

X[i][j] = X[i][j] - X[i][j-1] * A[i][j] / B[i][j-1]; //S1

//upward y sweep

for (j=0; j<N; j++)

for (i=1; i<N; i++)

X[i][j] = X[i][j] - X[i-1][j] * A[i][j] / B[i-1][j]; //S2

Figure 4.3: Sample ADI program with only forward x and y sweeps.

4.4 Finding computation placements

The computation mapping of a statement Si, denoted by πSi
, maps computation tiles to

nodes. The chosen computation mappings have a significant impact on the execution time

of a program. Two key factors to be considered while deciding computation mappings

are communication volume and load balance. We call a computation mapping for a given

program optimal if it leads to the lowest communication volume and perfect load balance.

We model the problem of finding optimal computation mappings as a graph partitioning

problem on the inter-tile communication graph (TCG). Each vertex in the TCG represents

a computation tile of the program.

4.4.1 Communication volume minimization

An edge e is added between two vertices if and only if there is communication between

the corresponding two tiles when they are executed on different nodes. The weight of the

edge ew will be equal to the communication volume between the two tiles. Finding the

optimal computation mappings is equivalent to partitioning the TCG into p (number of

nodes) equal size partitions with the objective to minimize the sum of those edge weights
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that straddle partitions. Let Eb represent set of edges whose vertices are mapped onto

different partitions.

obj = minimize
∑
e∈Eb

ew (4.1)

This objective function represents the total communication volume for the entire program

execution. The resulting computation mappings will thus have lower communication vol-

ume.

//forward x sweep

for (jj=0; jj<floord(N, 128); jj++) //serial loop

for (ii=0; ii<floord(N, 128); ii++) //parallel loop

for (i=max(1, ii*128); i<min(ii*128+127, N); i++)

for (j=max(1,jj*128); j<min(jj*128+127, N); j++)

X[i][j] = X[i][j] - X[i][j-1] * A[i][j] / B[i][j-1]; //S1

//upward y sweep

for (ii=0; ii<floord(N, 128); ii++) //serial loop

for (jj=0; jj<floord(N, 128); jj++) //parallel loop

for (j=max(1, jj*128); j<min(jj*128+127, N); j++)

for (i=max(1, ii*128); i<min(ii*128+127, N); i++)

X[i][j] = X[i][j] - X[i-1][j] * A[i][j] / B[i-1][j]; //S2

Figure 4.4: Tiled ADI program, tile size = 128

Figure 4.5 illustrates the tiled iteration domain along with RAW dependences for the

tiled ADI example. A vertex is added to TCG for each of the tiles. Dependence edges

that cross tile boundaries are used to determine the necessary communication sets and

receiving tiles. For a given tile, an edge is added to each of its receiving tiles. The size

of the communication set between sender and receiver tiles is set as the weight of edge

between them. In the Figure 4.6a, from the tile T0 there are inter tile dependence to tiles

T3 and T9. Hence, edges are added from T0 to its receivers T3 and T9. Since, there are

2 inter tile dependence edges from T0 to T3 edge weight is set to 2 for the edge between
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Figure 4.5: Tiled iteration space with dependences

them.

4.4.2 Load balancing constraints

A parallel phase is a contiguous band of parallel loops/dimensions that have been identified

for potential extraction of parallelism. Programs often consist of multiple parallel phases.

To achieve good load balance, it is essential that an equal or a nearly equal number of

tiles are allocated to all nodes in each parallel phase. We identify the tiles that belong

to a parallel phase and add constraints that will minimize load imbalance within each

parallel phase. Vertex weights are used to distinguish between tiles that belong to different

parallel phases. The vertex weight is a vector of size equal to the total number of parallel
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(b) Computation distribution

Figure 4.6: TCG of ADI example

phases. All tiles which belong to the ith parallel phase will have a vertex weight with the

ith component set and rest zero. Let Si be the sum of the ith vertex weight component

of all vertices belonging to a single partition. For each vertex weight component, we add

load balancing constraints that minimize the difference between Si‘s of any two partitions.

These constraints make sure that the resulting compute tile mapping will have an equal or

a nearly equal number of tiles to each node in each parallel phase.

When performing static scheduling, all tiles belonging to a band of tiled parallel loops,

for a given value of surrounding sequential loops, are said to belong to a single parallel

phase. Figure 4.4 shows the tiled code for the ADI example. For the first loop, ii is

the innermost tiled parallel loop. All the iterations of ii, for a particular value of outer

sequential loop jj, belong to the same parallel phase. In case of dynamic scheduling, we

do a topological sort of the TCG to identify tiles that belong to the same parallel phase – all
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tiles at the same level belong to a single phase. For the ADI example in Figure 4.6a there

are six parallel phases. All tiles belonging to a single parallel phase are marked with the

same color. Tiles T0, T1 and T2 belong to same parallel phase and each will have vertex

weights as 〈1, 0, 0, 0, 0, 0〉. Similarly T9, T12 and T15 belong to same parallel phase and

will have vertex weight as 〈0, 0, 0, 1, 0, 0〉. The load balancing constraints ensure that Tiles

T0, T1 and T2 are equally divided among all nodes.

The above formulation finds partitions that have an equal number of tiles in each par-

tition. If number of iterations in the tiles are not equal, assigning equal number of tiles

to each partition could lead to load imbalance. To overcome this issue, we set number of

iteration in the tile as the vertex weight component. Load balancing constraints on vertex

weights ensure that each partition will have an equal number of iterations, in each parallel

phase.

Figure 4.6b shows one of the optimal solutions for graph partitioning of the ADI ex-

ample which is a 2-dimensional sudoku mapping. In each parallel phase, equal number

of tiles are assigned to all the nodes, which ensures perfect load balance. Computation

mapping is identical for both S1 and S2. Computation tile 〈ii, jj〉 of S1 and 〈ii, jj〉

of S2 are mapped to the same node, thus eliminating communication between S1 and

S2. Figure 4.7b shows the computation mappings for stencil programs with near-neighbor

communication, which is exactly the block distribution. Figure 4.8b shows the obtained

computation mappings for tapered iteration spaces. This mapping is slightly different from

block-cyclic mapping. In this mappings, first and last columns are mapped to node P0,

whereas in block-cyclic mappings first and fourth columns will be mapped to node P0.

The obtained mapping has slightly better load balance than block-cyclic distribution, as

equal number of tiles are allocated to all the nodes.

The graph partitioning solution of the TCG also determines the optimal dimensionality

of the computation mapping. Note that a higher dimensional mapping is not necessarily
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(a) TCG with near-neighbor communication
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Figure 4.7: Stencil with near-neighbor communication

optimal for an entire sequence of loop nests being optimized. Consider a program with

the first loop nest (forward x sweep) of ADI. The TCG of this program contains only the

upper half of Figure 4.6a with just nodes of S1. The optimal computation mapping for this

graph is a 1-d block distribution of ii loop. Similarly, for the lower half with the second

loop nest (upward y sweep), the optimal computation mapping is a 1-d block distribution

of the jj loop. Our graph partitioning approach is able to find these solutions.

4.5 Scalability of the solution

Graph partitioning with load balancing constraints is an NP-hard problem. Solutions

to these problems are generally derived using heuristics and approximation algorithms.

Open-source software packages such as METIS [14] and SCOTCH [15] can be used to

solve graph partitioning problems. As the problem size increases, the number of vertices

and edges in the graph also increase. The number of load balancing constraints also in-

creases as we add load balancing constraints to each parallel phase, and this depends on

the problem size. Even state-of-the-art graph partitioning software such as these do not
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Figure 4.9: Scaling a computation mapping for ADI
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scale as the problem size increases. For example, to partition a TCG of ADI with 64 ver-

tices into 4 partitions, METIS takes around 240s. If the problem size is increased further,

both the time taken and the memory required for partitioning increases drastically. An-

other major problem is that the quality of the obtained solution degrades as the problem

size increases. For the ADI example, we observe that perfect “sudoku” mappings are not

obtained for more than 32 vertices.

4.5.1 Graph partitioning algorithms

In most of these packages [16, 17, 18], graph partitioning is done in three phases, namely,

graph coarsening, initial partitioning and uncoarsening/refining. In the graph coarsening

phase, a smaller graph is derived from the input graph by collapsing together a set of ad-

jacent vertices. This process is continued until the size of the graph is reduced to just a

few hundred vertices. Now, in the initial partitioning phase, this coarsened graph is par-

titioned using brute force or relatively simple approaches. This step is very fast since the

size of the graph is very small. Finally, in uncoarsening/refining phase, the partitioning of

smaller graph is projected to successively larger graphs. The projected partitioning is re-

fined using various heuristics, which will iteratively move the vertices between partitions,

as long as such moves improve the quality of partitioning. This process is continued until

the partitioning solution is projected and refined to the original graph.

4.5.2 Our approximation

In order to make our approach scalable for larger problem sizes, we use an approximation

to partition the TCG. Note that the dependence patterns typically do not change as the

problem size is increased beyond a certain point. Hence, the optimal mappings for a larger

problem size can often be obtained by scaling the optimal mappings for a smaller one. The
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computation mappings for larger problem sizes and the actual number of processors are

derived from the computation mappings for a smaller problem size and number of proces-

sors. At compile time, we build the TCG for a smaller problem size. Problem sizes are

chosen such that the number of vertices in each parallel phase is a particular number that

is sufficient to distinguish the nature of the obtained mapping. The number of processors

is fixed at four which we found to be sufficient in practice, and the problem size is set so

that we have at least two times the number of processor tiles along each parallel dimen-

sion. This allows us to distinguish between block and block-cyclic mappings. The edges

weights and vertex weights are computed for this smaller graph, and this is partitioned us-

ing METIS. This step is very fast owing to a very small graph. At runtime, when the actual

problem sizes and number of nodes are known, the partitioning solution is derived from

the solution of the smaller representative graph. The mapping obtained is first classified as

either being block, block-cyclic, sudoku or an arbitrary one. If a mapping is identified as

block, sudoku, or arbitrary, then we perform a “block” scaling of the mapping for the right

problem size and the number of processors. This is illustrated in Figure 4.9 which shows

the computation mapping obtained for larger problems sizes for the ADI example. We

then generate a function that returns the correct mapping for any given number of nodes.

For block and sudoku mappings, block scaling ensures that the respective property

continues to hold. For arbitrary mappings, we find the block scaling to be a reasonable

approach though we have not seen cases where we found arbitrary mappings. More pre-

cisely, let Nini
be the total number of tiles in the ith distributed dimension of the input

problem and Nrepi the number of tiles in that of the smaller representative problem. Then,

block scaling for π for a larger problem size is done as follows:

πin(i, j) = πrepi(i/(Nini
/Nrepi), j/(Ninj

/Nrepj)). (4.2)
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When the solution obtained through graph partitioning corresponds to a cyclic or a block-

cyclic mapping, we perform a cyclic scaling analogous to the block scaling described

above. Overall, this approximate approach of using a representative graph and then scaling

the solution analytically based on an identified template mapping does not take more than

a second on any of the examples considered for evaluation. Actual communication costs

finally depend on network topology – finding computation mappings that are optimal for

a given network topology is beyond the scope of this work and is left for future.



Chapter 5

Data Allocation and Management

In this chapter, we present techniques to allocate data according to already found compu-

tation mappings. Recall from the previous chapter that the complete computation mapping

itself is determined partly at compile time and partly at runtime, i.e., just before start of

computation. Since a compute tile is our unit of mapping, we determine the data required

to execute a particular compute tile, and allocate just that data at the node executing it.

Data accessed by a computation tile depends on the array access functions in the loop

statement. It could be a contiguous block of array for ADI example 5.1, a row and a

column for floyd-warshall as shown in Figure 5.2 or a diagonal if the array access

is X[i][i]. There are different techniques to allocate only the required data on a node.

In PGAS model data is allocated at the granularity of pages. This scheme leads to lot

of redundant data allocation when the data that needs to be allocated, is not contiguous

(Figure 5.2). Another approach is to allocate the bounding box (enclosed rectangle) of

the required data. Even this scheme leads to inefficient allocation in case of diagonal data

region (Figure 5.3).

33
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d2

d1

Figure 5.1: Data accessed by compute tile (1,0) due to array access X[i][j − 1] in ADI

example

5.1 Data tiling

Our approach for data allocation is to tile the data space, similar to tiling an iteration space,

compute the data required by a compute tile at the granularity of data tiles, and allocate

only these required data tiles on-demand on the node executing it. This scheme leads to

an efficient data allocation for all the above cases.

5.1.1 Data tiling hyperplanes

In order to tile the data space, we need to find the data tiling hyperplane compatible with

the compute tiling hyperplanes. In this section, we describe techniques to find the shape of

the computation and data tiles. We determine the shape of computation and data tiles such

that the data accessed by a computation tile is packed into as few data tiles as possible.

Let S1, S2, . . . , Sn be the statements of a program. Let DSj
be the domain of Sj . Let
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d1

d2

Figure 5.2: Row and column data access

d2

d1

Figure 5.3: Diagonal data access due to X[i][i]
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E be the set of dependence edges with each edge e ∈ E characterized by a dependence

polyhedron Pe. Pe is a set of linear constraints that relate source iterators and target iter-

ators that are in dependence. A one-dimensional affine transformation for Sj , denoted by

φSj
, is defined as

φSj
(~i) = ~hSj ·~i+ h

Sj

0 . (5.1)

φSj
can be viewed as a function, mapping iterations of Sj to numbers that represent virtual

processor ids. For example, φSj
(~i) = (1, 0)T .~i+ 0 maps all iterations (i, j) to virtual pro-

cessor i. φSj
partitions the iteration space of Sj , and ~h = (1, 0) represents the orientation

of the hyperplane that partitions it. When φSj
satisfies certain properties, we call it a tiling

hyperplane.

Similarly, for arrays we define an array mapping function ψAk
that maps array elements

to virtual processors represented by

ψAk
(~a) = ~dAk ·~a+ dAk

0 , (5.2)

where ~d represents the orientation of the hyperplane that partitions the array space, d0 is

the constant offset, and ~a is a data element in Ak. We call these mappings data tiling

hyperplanes if they are found to satisfy certain properties that we will describe later in this

section.

Consider the first loop nest of the ADI example shown in Figure 4.3. Assume that the

computation mapping for S1 is φS1(~i) = (1, 0)T ·~i. Different iterations of the i loop will

be mapped to different virtual processors. For the array access X[i][j], different iterations

of i loop access different rows of array X . Hence, the first dimension of X has to be

partitioned. This corresponds to the array mapping ψX(~a) = (1, 0)T ·~a, which in turn

corresponds to a row distribution of X . If the array access had been X[j][i], then for

φS1(~i) = (1, 0)T ·~i, the corresponding data mapping would be ψX(~a) = (0, 1)T ·~a, i.e., a
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j

i

(0,1)

Figure 5.4: Partitioning the iteration space with (0,1) hyperplane

column-wise distribution of X . Hence, the choice of data partitioning hyperplanes, for a

given computation mapping, is driven by the array accesses.

Let F i
sj ,Ak

be the ith access function of array Ak in statement Sj . In our model, F is an

affine function of loop iterators and program parameters. φsj(~i) is the virtual processor to

which iteration~i will be mapped. F i
sj ,Ak

(~i) represents data accessed by~i. ψAk
(F i

sj ,Ak
(~i))

is the virtual processor to which the data accessed by~i will be mapped. Now, we require

that the data accessed by~i be mapped to the same virtual processor as the one~i is mapped

to, i.e.,

φsj(~i) = ψAk
(F i

sj ,Ak
(~i)). (5.3)

The above condition is conceptually the same as that used by Anderson and Lam [19],

but it was in a form that worked only for perfect loop nests and uniform dependences, and

hence the subsequent approach relying on it was also different. It is not always possible

to ensure condition (5.3) since multiple iterations can access the same data. Hence, what
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d2

d1

(0,1)

Figure 5.5: Partitioning the data space of X with (0,1) hyperplane for access X[i][j]

d2

d1 (1,0)

Figure 5.6: Partitioning the data space of X with (1,0) hyperplane with array access

X[j][i]
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we try to capture is the difference between the LHS and RHS of (5.3) as follows and try to

minimize it:

γisj ,Ak
(~i) = |φsj(~i)− ψAk

(F i
sj ,Ak

(~i))| ~i ∈ Dsj . (5.4)

The above definition is thus used to connect compute and data tiling hyperplanes.

We first describe the existing technique to characterize and choose from valid compute

tiling hyperplanes, and then show how data tiling constraints and objectives are integrated

into it to minimize γs. Previous work [2] provided an automatic approach to find compute

tiling hyperplanes that exposed maximal course-grained parallelism and locality based on

an Integer Linear Programming formulation. To enforce validity for tiling for an edge

e with dependence polyhedron Pe, the following constraint ensures non-negative depen-

dence components that is sufficient for tiling:

φsj(~t)− φsi(~s) ≥ 0, 〈~s,~t〉 ∈ Pe. (5.5)

Then, the following cost function has been used to select the best hyperplane among the

set of valid tiling hyperplanes.

δe(~t, ~s) = φsj(~t)− φsi(~s), 〈~s,~t〉 ∈ Pe (5.6)

This cost function is a measure of communication volume or reuse distance – and the ILP

is solved to minimize it.

We now add data tiling hyperplane coefficients to the ILP described above and use

(5.4) to relate compute and data tiling hyperplane coefficients. Equation (5.4) cannot be

directly added to ILP formulation as it leads to non-linear constraints between hyperplane

coefficients and loop iterators. The bounding function technique [20] can again be used

here to obtain constraints in a linear form. When the iteration spaces are bounded, one
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can obtain an upper bound on γisj ,Ak
(~i). The maximum mismatch quantified by γ occurs

when the iterations and the entire data accessed by them are mapped onto different virtual

processors. This mismatch can be bounded by an affine function of program parameters

~p, i.e., there exists vAk
(~p) = uAk

.~p+ w such that

vAk
(~p)− γisj ,Ak

(~i) ≥ 0, ~i ∈ Dsj (5.7)

By minimizing the bounding function coefficients ~uAk
, we indirectly minimize (5.4). Now

the affine form of the Farkas lemma can be applied to (5.7).

vAk
(~p)− γisj ,Ak

(~i) ≡ λsj ,Ai
k0

+ Σtλsj ,Ai
kt

(at~i+ bt), (5.8)

where λSj ,Ai
kt
≥ 0 are the Farkas multipliers and at~i + bt ≥ 0 are the faces of Dsj . The

coefficients of ~i and ~p in the resulting equations are eliminated using Fourier-Motzkin

elimination to obtain constraints in a linear form.

The resulting ILP system with tile validity conditions (5.5), cost function constraints

(5.6) and data hyperplane constraints (5.7) is solved using PIP [21] to get both compute and

data tiling hyperplanes. PIP computes the lexicographical minimal solution for the ILP.

Hence, the order of variables is important. We add separate bounding function coefficients

for each of the arrays to ensure that non-zero bounding coefficients of one array do not

affect the choice of data hyperplanes for the other arrays. If there is a mismatch between

computation and data tiling hyperplanes, then the bounding function coefficients of (5.7)

will be non-zero. If same bounding function coefficients are used for all arrays, then

the mismatch between computation and data hyperplanes for a single array may lead to

sub-optimal data tiling hyperplane for other arrays. Let us, ws be the bounding function

coefficients from the Equation (5.6), uAk
, wAk

be the bounding function coefficients for



Chapter 5. Data Allocation and Management 41

array Aj resulting from (5.7), and hsj be the vector of compute hyperplane coefficients,

and dAk
that of the data tiling hyperplane coefficients. Equation (5.9) shows the order of

variables used for the lexicographic minimal solution:

min≺(us, uA1 , . . . , ws, wA1 , . . . , hs1 , . . . , dA1 , . . . ) (5.9)

5.1.2 Validity of data tiling hyperplanes

Consider the example shown in Figure 5.7. For compute tiling hyperplane (1,0), there is

no need to tile arrays v1 and v2, as all iterations of i loop access entire v1 and v2 arrays.

Once we solve the ILP, we obtain a compute tiling hyperplane for each of the statements,

φSj
, and a data tiling hyperplane for each of the arrays, ψAk

. A data tiling hyperplane ψAk

is considered to be invalid for all F i
Sj ,Ak

if the φSj
lies in the union of the null spaces of all

array access functions, F i
Sj ,Ak

. If this condition is satisfied, then all iterations of Sj access

the entire array Ak. Hence, it is not necessary to tile the array space even if the iteration

space of Sj is tiled with φSj
. It is necessary to tile the data space only when different

partitions of the iteration space, due to φSj
, access different parts of array Ak.

for (i=0; i<N; i++)

for (j=1; j<N; j++)

B[i][j] = A[i][j] + u1[i]*v1[j] + u2[i]*v2[j];

Figure 5.7: First loop nest of gemver
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Algorithm 1: Finding compute and data hyperplanes
Input: Data dependences (E), array access functions (F)

Output: φSj ∀Sj , ψAk
∀Ak

1 C ← ∅;

valid_hyperplanes_Sj ← ∅ ∀Sj ;

valid_hyperplanes_Ak ← ∅ ∀Ak;

num_valid_hyperplanes_Sj ← 0 ∀Sj ;

num_valid_hyperplanes_Ak ← 0 ∀Ak;

max_num_hyperplanes← max(dim(Sj)) ∀Sj ;

for each e ∈ E within fused loops do

2 Add validity constraints resulting from φsj (~t)− φsi(~s) ≥ 0 to C

3 for each e ∈ E do

4 Add the bounding function constraints resulting from |v(~p)− δe(~t, ~s)| ≥ 0 to C;

5 for each F i
sj ,Ak

∈ F do

6 Obtain constraints resulting from φsj (~i)− ψAk
(F i

sj ,Ak
(~i)) ≥ 0 and

ψAk
(F i

sj ,Ak
(~i))− φsj (~i) ≥ 0 to C;

7 while max_num_hyperplanes ≥ 0 do

8 Solve the ILP with constraints in C;

max_num_hyperplanes← max_num_hyperplanes - 1;

for each φSj found do

9 if num_valid_hyperplanes_Sj < dim(Sj) then

10 Add φSj to valid_hyperplanes_Sj ;

num_valid_hyperplanes_Sj++;

Add constraints to exclude hyperplanes linearly dependent on φSj ;

11 for each ψAk
found do

12 if ψAk
is a valid data tiling hyperplane then

13 if num_valid_hyperplanes_Ak <dim(Ak) then

14 Add ψAk
to valid_hyperplanes_Ak;

num_valid_hyperplanes_Ak ++;

Add constraints to exclude hyperplanes linearly dependent on ψAk
;
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5.1.3 Optimal hyperplanes across non fused loops

Previous work [2] finds the compute tiling hyperplane by applying the validity and bound-

ing constraints for all dependences within a band of fused loops. Compute tiling hy-

perplane of each of the fused loop bands are computed independent of each other. The

computation and data tiling hyperplanes found this way may be suboptimal for a program

that consists of multiple fused loop bands. In the distributed memory context, since data is

distributed across multiple compute nodes, the compute and data hyperplanes found this

way may lead to excess communication across non fused loops. This can happen when two

non fused loops access the same array, and compute and data tiling hyperplanes of each

fused loop enforce a different data tile mapping. In order to find the hyperplane that leads

to minimum communication volume across entire program, we add the bounding function

constraints, specified in equation (5.6), even for the dependences across non fused loops.

These dependences capture the resulting communication volume across non fused loops,

hence, by bounding and minimizing these dependences, we are finding the hyperplanes

that leads to minimum communication volume for the entire program.

5.1.4 Iteratively finding all hyperplanes

A statement can have as many compute tiling hyperplanes as the dimensionality of its

iteration space. Similarly, an array can have as many data tiling hyperplanes as its di-

mensionality. Solving the ILP formulation described in the previous section gives us a

single compute tiling hyperplane for all statements and a single data tiling hyperplane for

all arrays. We add new constraints to the ILP to ensure that subsequent compute tiling

hyperplanes are linearly independent of ones already found. However, for data tiling hy-

perplanes, linear independence constraints are only added with respect to those that were

found to be valid. Algorithm 1 describes the complete procedure to find all compute and
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data tiling hyperplanes. For the ADI example 4.3, the first compute hyperplane for S1

and S2 is (1,0), corresponding data tiling hyperplane for arrays X , A and B is (1,0). The

second compute hyperplane for S1 and S2 is (0,1), corresponding data tiling hyperplane

for arrays X , A and B is (0,1). Since, each of the data tiling hyperplanes are linearly

independent of each other, they form a full rank matrix.

5.2 Data allocation

In this section, we describe how data is indexed and managed once data tiling hyperplanes

for each array have been determined. The data accessed for array Ak through access

function F in Sj can be computed by taking the image of the DSj
under F . However, we

are interested in computing data accessed by a particular compute tile. This enables us to

allocate only the data required for the tile on the node it executes on.

5.2.1 Data accessed by a compute tile

Data accessed by a compute tile is determined by computing the image of the access

function while treating dimensions outer to the tile, that we call inter-tile iterators, as

parameters. The resulting image will be a set, parametric in the inter tile iterators. By

plugging in a particular value for these inter tile iterators, precise data accessed by that

particular compute tile can be obtained. The shaded rectangle in Figure 5.8 shows the

parametric data region of compute tile (1,0) due to the array access A[i][j − 1].

When the data tiling hyperplanes are used, the parametric data regions obtained above

end up getting tiled as well in the same way iteration spaces are tiled. Same tile sizes are

used when tiling the iteration space using compute tiling hyperplanes and the parametric

data region using the corresponding data tiling hyperplane. After tiling, the dimensions of
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the parametric data region include the newly added inter data tile iterators, intra data tile

iterators and the inter compute tile iterators. For a particular value of compute tile iterators,

inter data tile iterators enumerate all data tiles accessed, and intra data tile iterators scan

data points inside a data tile.

D0 D1 D2

D3 D4 D5

D6 D7 D8

Figure 5.8: Accessed data for compute tile (0,1) for A[i][j − 1] in ADI

5.2.2 On-demand data tile memory allocation

Projecting out the inter data tile iterators, we get parametric polyhedron that can be used to

enumerate all the data tiles that a compute tile accesses. We use this polyhedron to generate

a function that will allocate memory for the data tiles required by a given compute tile.

This function will be called just before the execution of a compute tile. This will ensure

that data required by a compute tile is allocated only on that node which will execute the

compute tile. For the ADI example generated function returns data tiles D0 and D1 for

the compute tile (0,1), and only D0 for the compute tile (0,0).
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Algorithm 2: Determine accessed data tiles for array Ak

Input: Parametric data region DAk
of array Ak, data tiling hyperplanes ψAk

, tile sizes τk

Output: Parametric data tiles accessed

1 for each data tiling hyperplane ψAk
(~a) = ~dk·~a+ dk0, tile size τk do

2 add an inter data tile dimension ~aT , corresponding to ~a

add the following two constraints to DAk

τk ∗ ( ~dk· ~aT ) ≤ ~dk·~a+ dk0 ≤ τk ∗ ( ~dk· ~aT ) + τk − 1

3 Project out the intra-tile data dimensions ~a in DAk

return DAk

5.2.3 Allocation of first-read data

Input data of the program being compiled has to be initialized and distributed before start

of program execution. We thus also need to allocate that part of the input data that is

“live in” to the compute tiles to be executed on that node. We call this the first-read data.

First-read data of an array A is the set of all array elements whose values are first read

by a compute tile before a write is performed if at all. This set is identified by computing

the data accessed by all read accesses, and then subtracting out data accessed by target

iterations of RAW dependences entering the tile.

5.3 Data tile buffer reuse

Programs access different parts of the array during the entire execution of the program.

Consider the floyd-warshall kernel shown in Figure 5.9. For a particular outer k

loop iterator, we need to allocate kth row (due to X[k][i]) and kth column (due to X[j][k])

of array X on a particular node. Hence, for all the iterations of k loop we would end up

allocating entire array X on a single node. Often, we can reuse the data tile buffers, rather
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for(k=0;k<N;k++)

for(i=0;i<N;i++)

for(j=0;j<N;j++)

X[i][j]=f(X[i][k],X[k][j]);

Figure 5.9: Floyd-Warshall kernel

than allocating new buffers for every new data tile. For the floyd-warshall example

shown in Figure 5.10, we can reuse the data tile buffers D0, D3 and D6 after k = 3

iteration for data tile buffers D1, D4 and D7 which will be allocated in k = 4 iteration.

d1

d2

D0 D1 D2

D3 D4 D5

D6 D7 D8

Figure 5.10: Data tiles allocated due to X[k][j] for k = 3
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d1

d2

D0 D1 D2

D3 D4 D5

D6 D7 D8

Figure 5.11: Data tiles allocated due to X[k][j] for k = 5

A data tile buffer can be safely reused when all the compute tiles that require this data

tile have finished their execution. We can precisely count the number of compute tiles that

require a given data tile. Per data tile ref-count is used to capture number of compute tiles

that need this data tile. We generate a function that will enumerate all the compute tiles

executed by the given processor and use Algorithm 2 to get all the data tiles accessed by

tile, and increment their ref-count. This function is invoked at the start of the program.

Once the compute tile has finished its execution and data required by other tiles is packed,

we decrement the ref-count of all the data tiles accessed by this compute tile. If the ref-

count becomes zero we add these data tile buffer pointers to free-buffers queue. When we

want to allocate a new buffer for another data tile, the free-buffer queue is checked fist, if

it is non empty, one of its buffers is returned. A new allocation is done only when free-

buffer queue is empty. Per data tile ref-count is used to track the liveness information of

data tiles. Since, we use dynamic scheduling, actual schedule will be decided at runtime.

Above techniques provide an efficient, dynamic and schedule independent mechanism for
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data tile buffer reuse.

Algorithm 3: initialize_ ref_counts ()
Input: Set of all compute tiles

Output: data tile ref-counts

1 for each data tile ~d do

2 ref_count_ ~d← 0;

3 for each compute tile ~t do

4 if π(~t) == node_id) then

5 required_data_tiles← determine required data tiles (~t);

for each data tile ~d ∈ required_data_tiles do

6 ref_count_~d ++;

Algorithm 4: decrement ref-counts ()
Input: compute tile ~t

Output: data tile ref-counts

1 required-data-tiles← compute required data tiles (~t)

for each data tile ~d of required-data-tiles do

2 decrement ref-count of ~d

3 if ref-count of ~d equal to 0 then

4 add data tile buffer of ~d to free-buffer-queue
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Algorithm 5: buffer allocate ()
Input: data tile ~d

Output: data tile buffers

1 if free-buffer-queue is non-empty then

2 new-buffer← dequeue from free-buffer-queue

3 else

4 new-buffer = allocate new buffer

5 return new-buffer

5.3.1 Ensuring thread safety

Multiple threads could simultaneously allocate data tile buffers, increment or decrement

data tile ref-counts and reuse data tile buffers. We need to ensure that all the above opera-

tions are thread safe. We use a concurrent queue to maintain a list of free data tile buffers.

Atomic increment and decrement are used to modify data tile ref-counts. Atomic compare-

and-swap operations are used when the data tile buffer pointers are updated. Thus, the

whole implementation is thread-safe and lock-free. We use lock free concurrent queue

and atomic compare-and-swap from Intel TBB library [22] for our implementation.

5.4 Data tiling with dynamic scheduling

We have integrated data tiling with a dynamic scheduling framework which schedules at

the granularity of compute tiles. First, we determine the computation mappings πS for a

given problem size and the number of nodes. The dynamic scheduling runtime distributes

compute tiles according to πS . The read-in data is allocated and data tile reference counts

are initialized as per πS mappings. All compute tiles that are mapped to a single node
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are dynamically scheduled. Before start of tile execution, we call the on-demand allocate

function (Algorithm 2), which will allocate all required data tiles if they had not been

already allocated. After the tile has finished execution, we call the pack function which

packs data required by other nodes from the current node. Packed data is sent to its re-

ceive nodes using asynchronous MPI primitives. Once the pack function is finished, we

decrement the ref-counts of the data tiles used. Besides being called at schedule time,

the on-demand allocate function is also called before data received from other nodes is

unpacked.

5.5 Re-indexing data spaces

After we perform data tiling transformation, the memory layout of the arrays is changed.

Array elements within the data tile are now packed in contiguous memory locations. So we

need to modify the original array access functions such that they access correct elements

in the new memory layout. The dimensionality of arrayA is double because of the new tile

dimensions that are added. To ensure correctness, there should be a one-to-one mapping

between original array dimensions and new tiled dimensions. We use following equation

to obtain new array accesses from original array accesses.
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Figure 5.12: Original memory layout

P0 P1

P1 P0

Figure 5.13: Tiled memory layout

−→
T = (ψAk

·~a)/τk

~t = (ψAk
·~a)%τk

(5.10)

where
−→
T is the access vector corresponding to inter-tile dimensions, ~t to intra-tile

dimensions, ψA is the data tiling hyperplane, and τ is the tile size. Since array tiling

hyperplanes form a full-ranked matrix, a one-to-one mapping exists between original

and new array accesses. ~T represents inter data tile dimensions which enumerates data

tiles and ~t scans points inside a data tile. Array access X[i][j] will be transformed into

X[iit][jjt][it][jt]. If the data tiling hyperplanes used are (1,0) and (0,1) and tile sizes τ1,

τ2, the new array access will be

A[i/τ1][j/τ2][i%τ1][j%τ2].

The size of the data tile that is to be allocated is τ1 ∗ τ2. This mapping is exact for data

hyperplanes which have only one non-zero component, i.e., all points in the new array

layout will have corresponding points in the original layout. If the data tiling hyperplanes

used are (1,1) and (0,1) and the tile size is τ , the new array access as per Equation (5.10) is

A[(i+ j)/τ1][j/τ2][(i+ j)%τ1][j%τ2]. The size of the data tile that needs to be allocated is
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(τ1+τ2)∗τ2. Hence, even if the data tiling hyperplane has more than one non-zero compo-

nent, for example (1,1), we still obtain a correct one-to-one mapping but, we would end up

allocating more memory. We choose this mappings in spite of it not being exact due to the

simplicity of resulting new access expressions. With this mapping of Equation (5.10), we

always have either a mod or a divide of an entire expression – this enables us to simplify

access expressions (Section 5.5.1). There are more accurate mappings in the literature that

provide the exact data remappings, but with a complicated access expressions. We cannot

apply these optimizations (Section 5.5.1) for complex mappings and will incur significant

runtime overhead. Hence, for the hyperplanes with more than one non zero component,

we trade off memory for performance.

To selectively allocate only the required data tiles, we split the transformed array access

At[iit][jjt][it][jt] into two parts, (i) ptr = At[iit][jjt] which returns the pointer to data tile

(iit, jjt), and (ii) ptr[it][jt] which indexes the array element within a data tile. At is used

as an array of pointers to data tiles. Only when a particular data tile (iit, jjt) is required

by a node, a new data tile buffer is allocated and stored in At[iii][jjt].

5.5.1 Simplification of access expressions

Modified access functions obtained after transformation have the additional cost of a di-

vide, a mod, and an additional memory access (to obtain the data tile pointer) for each

array access. This could lead to significant overhead and may prohibit other optimizations

such as vectorization. We hoist the divide, mod and array dereference operations out of

the innermost loop by splitting it.

Consider the computational and data tiled code shown in Figure 5.14. The innermost

loop variable j always starts from a multiple of tilesize(128) and executes tilesize − 1

times. For array access A[i][j], the value of j/128 = jj is constant all iterations of the
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innermost loop j, i.e., all accesses are to a single data tile and hence can be hoisted out. The

value of j%128 goes from zero through tilesize−1. It can thus be replaced by j−128∗jj

thereby eliminating the mod operation for every access. For the array access X[i][j − 1],

only the first iteration of j refers to a different data tile, the remaining iterations access

elements within the same data tile. Hence, after peeling the first iteration, we eliminate the

mod, divide and array dereference operations from the innermost loop (Figure 5.15). If

the array access wasX[i][j+1], we peel the last iteration. Thus, by splitting the innermost

loop, we can hoist divide, mod and array dereference operations out of the innermost loop,

reducing the overhead of modified array accesses.

//forward x sweep

for (jj=0; jj<floord(N, 128); jj++)

for (ii=0; ii<floord(N, 128); ii++)

for (i=max(1,ii*128); i<min(ii*128+127, N); i++)

for (j=max(1,jj*128); j<min(jj*128+127, N); j++)

X[i/128][j/128][i%128][j%128] =

X[i/128][j/128][i%128][j%128] -

X[i/128][(j-1)/128][i%128][(j-1)%128] *

A[i/128][j/128][i%128][j%128] /

B[i/128][(j-1)/128][i%128][(j-1)%128]; //S1

Figure 5.14: Data tiled ADI example
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//forward x sweep

for (jj=0; jj<floord(N, 128); jj++)

for (ii=0; ii<floord(N, 128); ii++)

for (i=max(1, ii*128); i<min(ii*128+127, N); i++){

j = max(1, jj*128);

//peeled iteration

X[i/128][j/128][i%128][j%128] =

X[i/128][j/128][i%128][j%128] -

X[i/128][(j-1)/128][i%128][(j-1)%128] *

A[i/128][j/128][i%128][j%128] /

B[i/128][(j-1)/128][i%128][(j-1)%128]; //S1

j++;

X_ptr = X[i/128][j/128];

A_ptr = A[i/128][j/128];

B_ptr = B[i/128][j/128];

i_mod = i%128;

lb = max(1, jj*128+1);

for (j=max(1,jj*128+1); j<min(jj*128+127, N); j++)

X_ptr[i_mod][j-lb] = X_ptr[i_mod][j-lb] -

X_ptr[i_mod][j-lb-1] * A_ptr[i_mod][j-lb] /

X_ptr[i_mod][j-lb-1]; //S1

}

Figure 5.15: Optimized data tiled ADI example
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Data Movement Code Generation

In this chapter, we describe the techniques that are used to generate the data movement

code. Once a compute tile finished its execution, we need to communicate all the values

that are produced by the current compute tile and are required by other compute tiles. The

flow (RAW) dependences that cross the compute tile boundaries are used to determine the

communication set. This communication set is parameterized on a given compute tile.

The generated data movement code is valid for any computation placement, problem size

and number of nodes. We use Jacobi-style stencil example shown in 6.1 to illustrate the

working of data movement schemes.

for ( t=1; t<=T-1; t++)

for ( i=1; i<=N-2; i++)

a[ t ][ i]=a[ t-1][i-1]+a[t-1][i]+a[t-1][i+1];

Figure 6.1: Jacobi-style stencil code

56
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6.1 Flow-out (FO) scheme

Flow-out scheme, which is proposed by Bondhugula [3], computes a single communica-

tion set per compute tile that needs to be transferred to other compute tiles. For each tile

~i (inter tile iteration vector) and a data variable x, the flow-out set and receiving tiles are

determined parameterized on~i. Per-dependence flow-out set DFOx(~i,D) is the set of all

values which flow from a write in current tile to a read outside the tile due to a RAW de-

pendencesD. The complete flow-out set of tile is union of all the per-dependence flow-out

sets.

FOx(~i) =
⋃
∀D

DFOx(~i,D) (6.1)

The receiving tiles RIx(~i) is determined by projecting out the dimensions inner to ~i

in D. This projected D is used to generate a receiversx(~i) function which will return

all the receive tiles that require at least one element of FOx(~i). The flow-out set of a

tile could be discontinuous in memory. Hence, flow-out set of tile is packed into single

contiguous buffer and is sent to the receivers returned by receiversx(~i). Once the data is

received from other compute node, the flow-out data is unpacked only if receiversx(~i) is

non-empty and some data has been received from the π(~i).

Figure 6.2 illustrates the FO scheme, single flow-out set is sent to RT1, RT2 and RT3. If

RT1 and RT3 are mapped to different nodes, then unnecessary data is communicated. Thus,

this scheme could communicate large volume of unnecessary data since every element in

the packed buffer need not be communicated to every receiver compute node.
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Figure 6.2: FO scheme for stencil
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RT1 RT2

RT3

F1 F2

F3

Figure 6.3: FOIFI scheme for stencil
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Figure 6.4: FOP scheme with multicast packing for stencil
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PFO2 is sent to π(RT3), PFO3 is sent to π(RT3)
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Figure 6.5: FOP scheme with unicast packing for stencil
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6.2 Flow-out intersection flow-in (FOIFI) scheme

FOIFI scheme tries to avoid sending unnecessary data by computing the communication

set that is parameterized on both sender and receiver tiles. It computes the exact data that

needs to be send between a sender and a receiver tile.

Flow-in set: The set of all the values which flow to a read in a tile from a write outside

a tile due to RAW dependence D is termed as the per-dependence flow-in DFIx(~i,D).

The entire flow-in set FIx(~i) is union of all the per-dependence flow-in sets.

FIx(~i) =
⋃
∀D

DFIx(~i,D) (6.2)

Flow set: The flow set from a source tile~i to a target tile~i is the set of all values written

by~i, and then read by ~i′. The flow set is determined by intersecting the flow-out set of~i

and flow-in set of ~i′:

Fx(~i→ ~i′) = FOx(~i) ∩ FIx(~i′) (6.3)

FOIFI scheme eliminates the redundant data of FO scheme and when each receiving

tile is mapped to different compute node it ensures optimal communication volume. How-

ever, when multiple receiver tiles are mapped onto same compute node, this scheme leads

to duplication of data since it accumulates the flow sets. For example, in Figure 6.3 if RT1

and RT2 are executed by the same compute node, then F2 is sent twice.

6.3 Flow-out partitioning (FOP) scheme

FOP scheme tries to avoid both redundant data (FO) and duplicate data (FOIFI) by parti-

tioning the communication set in a particular non-trivial way, and sending each partition
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to only its receivers. Ideally, we want to partition the communication set such that all ele-

ments within each partition are required by all receivers of that partition. Since, the RAW

dependences determine the communication sets and the receiving tiles, at compile time we

partition these dependences into source-distinct partitions. Two sets of dependences are

said to be source-distinct if the region of data that flow due to the dependences in different

sets are disjoint. If two source-identical sets of RAW dependence polyhedra S1
D and S2

D

of an iteration~i are source-distinct, then:

DFOx(~i,D1) ∩DFOx(~i,D2) = ∅

∀D1 ∈ S1
D, D2 ∈ S2

D

(6.4)

A set of dependences is said to be source-identical if the region of data that flows due to

each dependence in the set is the same. If SD is source-identical, then:

DFOx(~i,D1) = DFOx(~i,D2) ∀D1, D2 ∈ SD (6.5)

Algorithm 6: source-distinct partitioning of dependences
Input: RAW dependence polyhedra Di and Dj

1 (IS , AS)← source (iterations, access) of Di

2 (IT , AT )← source (iterations, access) of Dj

3 D ← dependence from (IS , AS) to (IT , AT )

4 if D is empty then

5 DS ← DT ← empty

6 return

7 (I ′S , I
′
T )← (source, target) iterations of D

8 DS ← source I ′S and target unconstrained

9 DT ← source I ′T and target unconstrained

Output: source-distinct partitions {Di −DS}, {Dj −DT }, {Di ∩DS , Dj ∩DT }
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In order to partition dependences, it is necessary to determine whether the regions of

data that flow due to two dependences overlap, i.e., whether the region of data written by

the source iterations of one dependence overlaps with that of the other. This can be deter-

mined by an explicit dependence test between the source iterations of one dependence and

the source iterations of another dependence. A virtual dependence between two depen-

dences, that captures the overlap in the regions of data that flow due to those dependence.

If a virtual dependence does not exist between the two dependences, then they are source-

distinct. Otherwise, the virtual dependence polyhedron contains the source iterations of

each dependence polyhedron that access the same region of data. A new dependence poly-

hedron is formed from each dependence polyhedron by restricting the source iterations to

their corresponding source iterations in the virtual dependence polyhedron. These two new

dependences are source-identical. From the original dependence polyhedra, their corre-

sponding source iterations in the virtual dependence polyhedron are subtracted out. These

modified original dependences and the source-identical set of the new dependences are

source-distinct.

After the dependences are partitioned, communication sets and receivers are deter-

mined for each partition. Since the flow-out partitions are disjoint, this scheme reduces

the duplication of data. Also, for each partition we choose between unicast-pack and

multicast-pack based on following non redundancy conditions. We choose unicast-pack

at runtime if all the receiving tiles are mapped into different nodes. We choose multicast-

pack if all the receiving tiles are mapped to same node. FOP scheme minimizes both

redundant communication and minimizes data duplication and hence performs better than

FO and FOIFI.
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Evaluation

In this chapter we present experiments demonstrating improvement over existing tech-

niques. Our framework is implemented as a part of a publicly available source to source

polyhedral tool chain. The input for our framework is sequential C code which can be

arbitrarily nested affine loop nests. Compilable code to find computation placements and

to distribute data is automatically generated. Program dependences are computed using

ISL [11]. Polylib [23] is used to perform the polyhedral operations such as projection and

union used in Chapter 5. Cloog-isl [1] is used to generate code from the polyhedral repre-

sentation. METIS [14] is used to partition the initial graph and to determine computation

placement.

We first determine the compute and data tiling hyperplanes using techniques described

in Chapter 4. Computation hyperplanes are used to transform and tile the sequential

code [24]. Techniques described in [3, 25] are used to construct communication sets and

generate MPI code for distributed memory. The communication and distributed-memory

code works for any arbitrary computation placement. Data spaces are tiled and array ac-

cess expressions are modified using the data tiling hyperplanes. We generate functions to

63
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perform on-demand allocation and buffer management as explained in Chapter 5. These

functions are called at runtime for buffer allocation and management. All of these steps

work in an end-to-end automatic manner taking unmodified sequential affine loop nests in

C to parallelized code.

7.1 Benchmarks

We present results for Floyd-Warshall (floyd-warshall), LU Decomposition (lu),

Cholesky Factorization (cholesky), Alternating Direction Implicit solver (adi), 2mm

(2mm), and 3mm (3mm) benchmarks. All these benchmarks are chosen from the publicly

available Polybench/C 3.2 suite [26]. For comparing against ScaLAPACK programs, we

use atax, BiCG Sub Kernel (bicg), gemver, gesummv, and matrix vector product and

transpose (mvt) benchmarks, also from the Polybench/C 3.2 suite [26]. All benchmarks

use double-precision floating-point operations. The compiler used for all experiments is

ICC 13.0.1 with options -O3 -ansi-alias -fp-model precise. pluto-data-tile-gp refers to our

code. Where applicable, we compare or comment on solutions that would have been found

by previous approaches [7, 8, 3], and we also mention the specific mapping found by the

graph partitioning approach. Problem sizes used are listed in Table 7.1 and 7.2.

7.2 Distributed memory

7.2.1 Setup

The experiments were run on a 32-node InfiniBand cluster of dual-SMP Xeon servers.

Each node on the cluster consists of two quad-core Intel Xeon E5430 2.66 GHz proces-

sors with 12 MB L2 cache and 16 GB RAM. The InfiniBand host adapter is a Mellanox
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Benchmark Problem size

floyd-warshall 4096 x 4096

cholesky 4096 x 4096

lu 8192 x 8192

2mm 2048 x 2048

3mm 2048 x 2048

Table 7.1: Problem sizes for shared memory evaluation

MT25204 (InfiniHost III Lx HCA). All nodes run 64-bit Linux kernel version 2.6.18. The

cluster uses MVAPICH2-1.8.1 as the MPI implementation. We measured a point-to-point

latency of 3.36 µs, unidirectional and bidirectional bandwidths of 1.5 GB/s and 2.56 GB/s

respectively.

7.2.2 ScaLAPACK comparison

We developed ScaLAPACK versions of the benchmarks using multi-thread ScaLAPACK

routines of Intel MKL 11.0.1 library. All experiments are run with 8 threads per node. Fig-

ures 7.1, 7.2, 7.3, 7.4 and 7.5 show the weak scaling performance for both ScaLAPACK

code and our framework. ScaLAPACK internally uses 2-d block cyclic distributions for

all routines. Our framework computes the optimal computation placements for each of the

benchmarks. For gemver, our framework finds the sudoku distribution that significantly

outperforms 2-d block cyclic distribution. As we are able to fuse the first two loop nests

in gemver and perform data tiling, our single thread performance is improved by about

3x. For mvt, bicg and gesummv benchmarks, transformations applied result in an outer

parallel loop. The output of our framework is a 1-d block distribution with no commu-

nication, and this results in near ideal scaling. The optimal computation placements are
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Figure 7.1: Weak scaling performance of gemver
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Figure 7.2: Weak scaling performance of bicg
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Figure 7.3: Weak scaling performance of mvt
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Figure 7.4: Weak scaling performance of gesummv
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Benchmark Problem size per processor

gemver 20000 x 20000

bicg 40000 x 40000

gesummv 30000 x 30000

mvt 30000 x 30000

atax 30000 x 30000

floyd-warshall 2048 x 2048

lu 4096 x 4096

adi 128 x 4096 x 4096

Table 7.2: Problem size (per proc) for distributed-memory evaluation

dependent on input program. Our framework was able to find computation placements and

data allocations that are optimal for a given sequence of ScaLAPACK routines. For atax

benchmark ScaLAPACK code performs slightly better than our code because there was no

benefit with loop fusion and obtained computation mapping led to same communication

volume as that of two separate ScaLAPACK library calls.

7.2.3 UPC comparison

Unified Parallel C (UPC) [27, 28] codes were compiled with Berkeley Unified Parallel

C compiler version 2.16.0. All benchmarks were manually ported to UPC, while sharing

data only if it may be accessed remotely and incorporating UPC- specific optimizations

like localized array accesses, block copy, one-sided communication, where applicable.

Figures 7.6, 7.7 and 7.8 show the weak scaling performance for floyd-warshall,

lu and adi. Previous schemes [3, 7] would have chosen 1-d block distribution for adi,

that leads to O(n2) communication (nxn being the data size), and does not scale. On the
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Figure 7.5: Weak scaling performance of atax
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Figure 7.7: Weak scaling performance of lu
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other hand, our framework finds the sudoku-like placement that has O(n) communication

only. Manually written UPC code also used 1-d block distribution, hence performs very

poorly, Figure 7.6 shows the weak scaling performance for floyd-warshall. The

performance of pluto-data-tile-gp is very close to manually written 2-d blocked floyd-

warshall. 2-d block distribution performs better than a 1-d block one due to a higher ratio

of computation to communication – in this case, it leads to a 3× reduction in communica-

tion volume for 32 nodes. Our framework also implicitly finds the optimal dimensionality

of the distribution leading to the minimum communication volume. Note that a higher

dimensional mapping may not be necessarily optimal for an entire sequence of loop nests

being optimized. Manually developed UPC code is used with 1-d block distributed, hence

UPC performance is close to that of pluto-data-tile-gp with 1-d block distribution. For

lu benchmark, our framework applies a complex 3-d tiling transformation. Writing UPC

code incorporating the 3-d transformation is not trivial. Due to this UPC performs poorly.

7.2.4 Impact of data tile buffer reuse

Buffer reuse is an essential optimization to enable weak scaling in certain benchmarks

such as floyd-warshall. In our framework, both local and remote data is allocated

in similar fashion. For floyd-warshall, remote data received could span entire array,

for all iterations of outer sequential loop. Without buffer reuse we would have allocated

the entire array on each node, hindering weak scaling.
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7.3 Shared memory

7.3.1 Setup

The experiments were run on two shared memory setups. First one is a four socket ma-

chine with AMD Opteron 6136 CPUs (2.4 GHz, 128 KB L1, 512 KB L2 and 6 MB L3

cache, 8 cores per socket) with 64 GB DDR3 RAM running 64-bit linux kernel version

2.6.35. Second machine is a two socket Intel Xeon E5645 CPUs clocked at 2.4 GHz, 6

cores per socket, 32 KB L1 cache, 512 KB L2 cache, 12 MB L3 cache and 24 GB DDR3

RAM running 64-bit linux kernel version 2.6.32. The shared memory has a NUMA ar-

chitecture and we used numactl option to bind threads and pages appropriately for all

our experiments. When not performing data tiling (for comparison), we did a simple in-

terleaving of pages across all NUMA nodes. All the benchmarks are compiled with intel

icc (version 12.1.3) with -O3, -fp-model-precise options.

7.3.2 Impact of data tiling

Figure 7.14 shows that data tiling leads to a significant improvement in single thread per-

formance, and hence benefits shared-memory parallelization as well. Data tiling enhances

the spatial locality of space tiled loops. After data tiling, data accessed by a compute tile

is contiguous in memory. There will only be cold caches for all accesses to a data tile,

i.e., conflict misses are eliminated. It also reduces TLB misses and false sharing. Due to

simplification of the modified access functions, we completely eliminated associated over-

head from the innermost loop. This results in a geometric mean speedup of 2.67× over

code with no data tiling for 8 threads. Table 7.3 lists the hardware performance counter

with and without data tiling for floyd-warshall on Intel Xeon machine. There is

a significant reduction in the number of L2 load misses, L2 prefetch misses and offcore
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Figure 7.11: Speedup for cholesky benchmark on AMD multicore machine: with and

without data tiling, seq time is 295.6s
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Figure 7.13: Speedup for 3mm benchmark on AMD multicore: with and without data

tiling, seq time is 1200s

requests with data tiling. For cholesky we see a very high speedup of 5.42x. This is

also due to data tiling enabling vectorization. cholesky kernel had spatially conflicting

accesses in a single statement. This kernel is not readily vectorizable by icc as the mem-

ory accesses are not contiguous. If j is the innermost loop, then consecutive access of

A[j][i] are array size apart. However, after data tiling, accesses due to A[j][i] are tile size

apart, and icc can vectorize the code. So, in addition to enhancing locality, data tiling also

enables vectorization.

Performance counter Without data tiling (billion) With data tiling (billion)

L2 Load Misses 5.46 3.19

L2 Prefetch Misses 10.6 5.6

Offcore Requests 34.1 28.7

Table 7.3: Performance counters for floyd-warshall on Intel Xeon machine
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7.3.3 Impact of access function simplification

Simplification of access functions is a very important step. It not only eliminated the

overhead of modified access functions (a mod, a divide and an array dereference per ac-

cess) but also enabled optimizations such as vectorization. ICC compiler was not able to

vectorize the code with modified array access expression because of the mod and divide

operations. After simplification of modified access expressions, mod and divide opera-

tions were moved out of the innermost loop and ICC was able to vectorize it. This led to a

large performance improvement of up-to 4x.
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Chapter 8

Related Work

In this chapter we describe some of the past works related to compiler support for pro-

gramming distributed-memory architectures. We also present past works related to data

tiling for shared memory systems.

8.1 Distributed memory

There are several previous works such as Kennedy and Kremer [7], Chapman et al [5],

Garcia et al [6], Gupta and Banerjee [4], Lee and Kedem [29], Qi Ning et al [30], Peizong

Lee [31], Couvertier et al [32] that have addressed the problem of finding automatic data

distributions for distributed memory architectures in the context of regular programs. They

first decompose the input program into regions (phases) at the granularity of loop nests.

An array will have a single distribution throughout a phase and data is remapped between

phases (dynamic distributions). Within each phase, they find data distributions and ar-

ray alignments that lead to the least communication volume. Their solution space only

includes data distributions supported by HPF (High Performance Fortran).
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Framework Distribution

strategy

Computation

placements

Data distribu-

tion

Data move-

ment

Program

trans-

forma-

tion

support

Arbitrary

map-

ping

support

Minimize

load im-

balance

Buffer

reuse

Kennedy and

Kremer [7] +

HPF

Owner computes derived from data

distribution

automatic automatic no no no no

Banerjee [4] +

HPF

Owner computes derived from data

distribution

automatic automatic no no no no

Anderson and

Lam [19, 33]

Computer owns heuristics derived from

computation

distribution

automatic yes no no no

Garcia et al [6] +

HPF

Owner computes derived from data

distribution

automatic automatic no no no no

Manual UPC [6] Owner computes user specified user specified automatic no yes no no

Intel CnC [34] user specified user specified user specified manual no yes no yes

StarPU [35] user specified user specified user specified manual no yes no yes

Claßen and

Griebl [36]

Computer owns heuristics not distributed automatic yes yes no no

Bondhugula [3] Computer owns heuristics not distributed automatic yes yes no no

Our approach Computer owns graph partition-

ing based

on-demand data

tiling based

automatic yes yes yes yes

Table 8.1: Related work comparison
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Ramanujam and Sadayappan [37] use matrix notation to represent a communication

free static distributions, and solve the problem with linear algebra techniques. However,

there techniques can only find communication-free distributions.

Kennedy and Kremer [7] developed a framework for automatic data layout that builds

and examines explicit search spaces of candidate data layouts. A candidate layout is an

efficient layout for some part of the input program. The relevant program parts are called

phases. A phase identifies operations on arrays between which remapping may be prof-

itable. After generation of candidate layout search spaces for each phase, a single candi-

date layout is selected from each search space. The framework considers dynamic remap-

ping only between phases. They use 0-1 integer programming to compute the optimal

solutions to data layout selection problem and the inter dimensional alignment problem.

PARADIGM is a research tool developed by Palermo and Banerjee [4], that can au-

tomatically select dynamic data distributions starting from static distributions generated

using a constraint-based algorithm and compile-time cost estimations based on empiri-

cally measured parameters. The technique proposed for automatic selection of dynamic

data mappings can be broken down into two main steps. First, the program is recursively

decomposed into a hierarchy of candidate phases. Then, taking into account the cost of

redistributing data between different phases, the most efficient sequence of phases and

transitions is selected.

Garcia et al. [6] propose a framework to automatically determine the data distributions

and computation mappings. They try to find an optimal solution for the data mapping prob-

lem, given some characteristics of target architecture. They construct the Communication-

Parallelism Graph (CPG), which contains information about possible data movement and

parallelism within each phases, and remapping between phases. The data mapping prob-

lem is modeled as a minimal path problem with additional constraints to ensure the cor-

rectness of the solution. They also use 0-1 inter programming techniques to solve the
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minimal path problem.

The work of Anderson and Lam [19] combined with distributed-memory code gener-

ation [33] deals with finding computation and data distributions in a unified manner. They

first find affine computation and data mappings to virtual processors. They try to find these

distributions such that communication is minimized and parallelism is maximized. The

data and computation alignments are determined by computing the null space of the linear

functions that represent these mappings. The null space computation is based on an itera-

tive method that successively matches the mutual constraints of the data and computation

mappings. The result of the null space computation is the set of all communication-free

decompositions. Their algorithm for dynamic data layout and computation partitioning

uses a greedy heuristic. Their algorithm tries to join loop nodes that are connected by a

remapping edge in order to eliminate possible remapping costs. Edges are visited in the

order of decreasing weights. The algorithm works in a bottom-up fashion, starting with

innermost loops first. Two candidate loop nodes at the current level are merged into a

single component if the performance of the joined nodes is higher than the performance of

the individual nodes including the remapping costs. Once two nodes have been joined at

a level, they are considered a single component for all subsequent levels. After the greedy

algorithm terminates, the entire graph is partitioned into components, data and compu-

tation mappings for each component have been determined. In last step they use simple

heuristics to map virtual processors onto physical processor. Their technique can only

handle regular programs with perfectly nested loops and uniform dependences.

Compared to all previous techniques described, our technique first determines compu-

tation placements and the data distributions are then derived from it. Hence, it automat-

ically captures array alignments, static and dynamic distributions, and array replications

modeled in the previous approaches. To provide this flexibility, our approach includes an
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elaborate data allocation scheme. To summarize, our approach has the following advan-

tages over all previous works: (i) our solution space includes arbitrary mappings including

multipartitioning-style, not just block and block cyclic, (ii) our framework has flexibility

to apply locality enhancing transformations such as time tiling, since, we do not adhere to

owner computes rule, and (iii) we minimize both communication volume and load imbal-

ance.

Multipartitioning [8] and generalized multipartitioning [9] were specialized computa-

tion mapping schemes implemented in dHPF that provided excellent scaling for SP and

BT from NAS parallel benchmarks. They are also suitable for the smaller gemver and

adi codes we used for evaluation. However, a general mapping strategy that automatically

deduced multipartitioning as a suitable mapping while also incorporating block, block-

cyclic, and other arbitrary mappings for affine loop nests did not exist prior to this work.

Partitioned Global Address space (PGAS) [28] is a parallel programming model pro-

posed to ease the effort needed to program distributed-memory architectures. It assumes a

global memory address space that is logically partitioned and a portion of it is local to each

process or thread. The PGAS model is the basis of Unified Parallel C [27], Coarray For-

tran [38], Chapel [39], X10 [40], and Global Arrays [41]. PGAS attempts to combine the

advantages of a SPMD programming style for distributed memory systems (as employed

by MPI) with the data referencing semantics of shared memory systems. The RSTREAM

compiler provides some support for distributed memory execution [42]. However, crucial

steps of finding good computation placements is left to programmer. Data is allocated at

the granularity of pages hence, could lead to inefficient data allocations. It also leads to

suboptimal communication when the data that needs to be communicated is discontinuous

in memory.

Griebl [43] provides a discussion on distributed-memory auto-parallelization using

polyhedral framework. The work proposes a technique for scheduling and allocation
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keeping distributed memory architectures in mind. They generate code for both block

and block-cyclic distributions and it is upto the users to choose between them. They do

not deal with the problem of data distribution. Entire data is allocated in all the compute

nodes.

Kwon et al [44] propose a framework to translate OpenMP to MPI programs for a sub-

set of affine loop nests that transfer same set of data for every iteration of outer sequential

loop. They do not address problem of finding good computation placements and data dis-

tribution. They use only block computation distribution and entire data is allocate in all

nodes.

Another set of works – Intel Concurrent Collections (CnC) [34] and StarPU [35] focus

on providing high-level programming models which enable easy expression of parallelism

for distributed-memory architectures. However, in both these models programmer has to

specify computation placements and precise communication sets.

Baskaran et al [45] propose a data allocation scheme for GPUs. Their algorithm iden-

tifies convex union (convex hull) of all data accessed by a compute tile. The entire single

convex bounding box is allocated on GPU memory. Depending on array accesses, the

bounding box of a compute tile could be very large. Hence, this approach could allo-

cate very large data region even though the actual accessed area is much smaller. For

floyd-warshall benchmark, this scheme would allocate entire array instead of a sin-

gle row and column.

Ramashekar et al. [46] provides a Bounding Box based Memory Manager (BBMM)

when parallelizing for multi-GPU machines which distributes and manages data across

multiple GPUs to enable weak scaling. Their approach is to refine the initial bounding

boxes by performing set operations at runtime. Bounding boxes are split if there is any

overlap between them. However, splitting of bounding boxes introduces conditionals in

modified access functions, which may disable vectorization. Also, this refined approach
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could lead to inefficient allocations for certain cases such as, a diagonal array access pat-

tern.

8.2 Shared memory

Many recent works such as Lu et al [47] and Zhang et al [48] addressed the problem of

optimizing data layouts for shared-memory architectures. Lu et al [47] proposed a data

layout framework to enhance locality on NUCA-based chip multiprocessors. They find

a single “localizable” data and computation partitioning, and the data is tiled along only

one dimension. On the other hand, we find a full-ranked computation and data mapping

in a unified manner, and the data is thus tiled along multiple dimensions. This approach is

required due to our problem being very different from that of [47]. Zhang et al [48] pro-

posed techniques to determine data tiling hyperplanes and computation-to-core mappings.

They too formulate a graph partitioning problem to find the computation-to-core-mapping

to minimize communication volume. However, they do not consider load balance and use

simple heuristics to partition the graph. Both the approaches do not address on-demand

allocation and buffer reuse and their techniques do not provide the flexibility to support

any arbitrary computation mapping.

Jeremy et al [49] propose techniques to optimize sequences of BLAS kernels calls for

shared-memory architectures. They develop a domain-specific language to express linear

algebra operations and their BTO (Build to Order) compiler performs optimizations such

as loop fusion, tiling etc. across sequences of BLAS calls. Our approach fits well in such

domain-specific compilers as well to enable targeting distributed memory.

Our data tiling scheme also achieves the benefits of explicit data copying that is typi-

cally done manually for improved cache and prefetching performance, although not to the

same extent – since explicit copying performs an exact allocation of only the accessed data
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while data tiling allocates the set of all data tiles that include any accessed data. Blocked

and block recursive data layouts for matrices for BLAS routines have also been studied

in depth [50]. However, the approaches were manual and compiler support for them was

missing.



Chapter 9

Conclusions

9.1 Summary

Programming High Performance System with distributed-memory is a tedious, time con-

suming and error-prone task. Programmer has to extract parallelism, choose good compu-

tation placements, accordingly distribute and manage data, and generate precise communi-

cation code. An approach for programming HPC systems that automatically performs all

the above steps and achieves scalable performance for HPC systems is highly desirable. In

this thesis, we have provided efficient and automatic techniques to find good computation

mappings, efficiently distribute and manage data and to generate precise communication

code.

We developed an automatic technique to find good computation placements for the en-

tire program. We modeled the problem of finding good computation placements as a graph

partitioning problem with the constraints to minimize both communication volume and

load imbalance. Our approach encompasses traditional mappings such as block, block-

cyclic and other specialized mappings such as sudoku mappings and any other arbitrary
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mappings.

We proposed a data allocation technique based on data tiling to provide improved

locality and to enable weak scaling for distributed memory parallelization. Data local to a

node as well as that which is received from remote nodes was allocated on demand at the

granularity of data tiles. Besides enabling weak scaling for distributed memory, data tiling

also improves locality for shared-memory parallelization.

We presented a dynamic, schedule independent data tile buffer reuse techniques. We

used a compiler-based approach with light-weight runtime helper functions to track the

liveness of data tiles. This technique handles on-demand allocation and reuse of data tiles.

We also develop an efficient data movement scheme based on inter tile dependences

that will minimize the communication volume which was valid for any computation place-

ment, problem size and number of nodes.

We showed through experimental results, how our approach for computation map-

ping is able to come up with more effective mappings than those that can be used with

vendor-supplied BLAS libraries. These mappings that were automatically determined also

subsume mappings with similar properties that were implemented and used manually in

previous works. Experimental results on sequences of BLAS calls demonstrated a mean

speedup of 1.82× over versions written with ScaLAPACK and a maximum speedup on

4× while running on a 32-node cluster. Besides enabling weak scaling for distributed

memory, data tiling also improves locality for shared-memory parallelization. Experimen-

tal results on a 32-core shared-memory NUMA SMP system showed a mean speedup of

2.67× over code that is not data tiled.
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9.2 Future work

• In our current approach to find computation mappings, we try to minimize the over-

all communication volume. But, the actual communication cost depends on the

network topology of a HPC system. Finding computation mappings that are optimal

for a given network topology is left as a future work.

• We could also like to explore different dynamic scheduling strategies based on data

tiling. For example, on a system with constraints on memory size, it is essential to

reduce the memory footprint of a program. This can be achieved by maximizing the

data tile buffer reuse. A scheduling policy which will give priority to a compute tile

that will free maximum number of data tile buffers will enhance the data tile buffer

reuse.

• Another possible scheduling policy could be to maximize inter tile data reuse. This

can be achieved by choosing a compute tile that has maximum number of data tiles

in common with the current compute tile that has just finished its execution. This

scheme will enhance data locality since it enables reuse of data across different

compute tiles.
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